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JUAN ASENJO DE LEUZE
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RESUMEN DE LA TESIS

PARA OPTAR AL GRADO DE DOCTORA EN CIENCIAS DE LA INGENIERÍA,

MENCIÓN QUÍMICA
POR: GABRIELA DANIELA SANDOVAL HEVIA
FECHA: MARZO 2016

PROF. GUÍA: SR. JUAN ASENJO DE LEUZE

Productos biotecnológicos, como los biofarmacéuticos entre otros, son productos cuyas
tecnoloǵıas de producción están en constante desarrollo. Adicionalmente, sus escalas
de producción son pequeñas haciendo de las plantas batch las más apropiadas para su
producción. En particular, plantas batch multi-producto permiten la producción de una
variedad de productos biotecnológicos con varias etapas en común.

Una forma de modelar el diseño de plantas batch multi-producto es mediante el enfoque
basado en optimización que fue estudiado por primera vez para este tipo de plantas por
Robinson y Lonkar, quienes estudiaron el diseño de este tipo de plantas dimensionando los
equipos que la conforman. Pese a los múltiples avances en el área, los que incluyen decisiones
como la duplicación de unidades, la disposición de tanques de almacenamiento intermedio,
programación de la producción y consideración ambientales, entre otras mejores, aún existe
una falta de trabajos donde este tipo de enfoques es aplicado en plantas reales.

En este trabajo se estudia una reformulación Entera-Mixta Lineal (MILP) del problema
Entero-Mixto No-Lineal (MINLP) que resulta al plantear el modelo para el diseño de una
planta biotecnológica batch multi-producto. En un primer paso se estudia una reformulación
MILP que permite modelar el diseño de una planta utilizando tamaños de equipos en un
conjunto continuo y una selección de hosts en un conjunto discreto de opciones. Esta
reformulación hace uso de técnicas avanzadas de reformulación, probando ser escalable y
confiable para su aplicación en casos reales. En un segundo paso, la reformulación MILP
original fue modificada para la inclusión de una selección de equipos, tanto en un conjunto
discreto, como en uno continuo, dando un enfoque más realista para poder modelar una
planta biotecnológica batch multi-producto; donde unidades como los reactores pueden ser
construidos de acuerdo con las necesidades del cliente, sin embargo, unidades como las
columnas cromatográficas sólo están disponibles en tamaños discretos dados por el proveedor.

Información de procesos reales que formaban parte de una planta batch multi-producto
real permitieron la determinación de los parámetros del modelo y una comparación entre las
distintas lineas de producción versus la planta real mostraron que este tipo de modelos puede
permitir grandes ahorros en los costos de los principales equipos de la planta.

Finalmente, como el enfoque estudiado utiliza software de modelación y optimización,
el modelo es más amigable para quienes puedan utilizarlo en la práctica. Sin embargo
niveles más bajos de implementación podŕıan mejorar los tiempos de resolución permitiendo
la inclusión de formulaciones más complejas, como por ejemplo, la inclusión de costos u
objetivos de producción variables.
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Agradecimientos
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Abstract

Biotechnological products such as biopharmaceuticals among others are products which
production technologies are in constant development. In addition, their production scales
are small making batch plants the most suitable type for their production. In particular,
multi-product batch plants allows the production of a variety of biotechnological products
with many common steps.

One way to model the design of such plants is the optimization based approach that
was first studied in 1972 by Robinson and Lonkar who addressed the equipment sizing of
a multi-product batch plant. Despite of the advances in the area, including decisions as
duplication of units, allocation of intermediate storage vessels, scheduling and environmental
considerations, among other improvements, there is a lack of reported work where this type
of approach is applied to real plants.

In this work a Mixed-Integer Linear Programming (MILP) reformulation of the resulted
Mixed-Integer Non-Linear problem (MINLP) for the design of a biotechnological multi-
product batch plant is studied. In a first step a MILP reformulation that addresses the
desing of a plant using continuous equipment sizes and discrete host selection is studied.
This reformulation made use of advanced reformulation techniques and proved to be scalable
and reliable for its application in real cases. In a second step the former MILP reformulation
was modified for the inclusion of the selection of equipment sizes in both, continuous and
discrete sizes giving a more realistic approach to model a real biotechnological multi-product
batch plant. Items such as reactors may be build according to customer needs, but units such
as chromatographic columns are only available in discrete sets of sizes given by manufacturers.

Information from real processes that where part of an actual multi-product batch plant
allowed the computation of the model parameters; and a comparison of the optimized facilities
versus the actual plant showed that this type of models may achieve great savings in the cost
of the main equipment of the plant.

As the studied approach relies on “off the shelve” optimization and modelling software
the model is more amiable to practioners. Nevertheless lower implementation levels could
improve resolution times allowing for the inclusion of more complex formulations such as the
inclusion of variable costs and production target parameters, among others.
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Chapter 1

Introduction

1.1 Biotechnological industry and batch pro-
cesses

According to Moreno & Montagna (2007b):

The batch mode of operation in food and biotechnological industries has received
a renewed interest particularly because of the market wich has become more
uncertain, complex and competitive.

Batch plants can be easily reorganized to allow for production modifications within the
same plant (Barbosa-Póvoa, 2007) being the most common and studied structures the multi-
product and the multipurpose batch plants. In multi-product or flowshop plants all products
follow the same production path (see Figure 1.1). On the other hand, in multipurpose
or jobshop plants different products can be produced by sharing available equipment, raw
materials, utilities and production time resources. Major difference with multi-product
plants is that different products may be produced in arbitrary sequences and locations (see
Figure 1.2).

A

B

C

1 2 3 4

A

B

C

Figure 1.1 – Multi-product/flowshop plant (taken from Biegler et al. (1997)).

This work is focused on multi-product batch plants since the main objective is the
application of an optimization based approach to the design of a biotechnological multi-
product batch plant using information of real processes that were in fact part of a real
multi-product batch plant (Imperatore & Asenjo, 2001).

1



1.2 Multi-product batch plant design 1 Introduction

A

B

C

1 2 3 4

A

B

C

Figure 1.2 – Multipurpose/jobshop plant (taken from Biegler et al. (1997)).

1.2 Multi-product batch plant design with an
optimization based approach

The multi-product batch plant design may include a variety of problems such as synthesis,
design, production planning, and scheduling (Voudouris & Grossmann, 1993). The main
objective is to minimize the production requirements over a defined time horizon (Barbosa-
Póvoa, 2007). Voudouris & Grossmann (1993) classified such decisions as follows:

1. Synthesis decisions

(a) allocation of tasks to equipment

(b) parallel units operating either in-phase or out-of-phase

(c) location of intermediate storage

2. Design decisions

(a) selection of equipment of standard sizes

(b) sizing of intermediate storage vessels with standard sizes

3. Production planning decisions

(a) optimal length of production cycle during which the optimal schedule is executed

(b) levels of inventory of final products

4. Scheduling decisions

(a) sequencing of products

The optimization based approach for the design of batch plants began with Robinson
& Loonkar (1972) who studied the design decision of selection of equipment sizes and since
then great progress has been made. In recent years synthesis decisions such as duplication of
units in series has been incorporated (Moreno et al., 2009a,b). Corsano et al. (2005) studied
synthesis, design and operation decisions simultaneously; Fumero et al. (2011, 2012b) studied
the simultaneous design and scheduling of a multi-product batch plant; and authors such as
Pinto-Varela et al. (2009) have included demand uncertainty, environmental issues (Wang
et al., 2010) and transportation concerns (Yi & Reklaitis, 2011).

2



1.3 Elements for the design and synthesis 1 Introduction

According to Iribarren et al. (2004) towards the middle of the past decade despite of the
existance of a great amount of work based on expert systems for the synthesis of bioprocesses
just few papers that used an optimization based approach had been published; and those
that had been published dealt with small portions of the global problem (Montagna et al.,
2004). That is the case of Vásquez-Alvarez et al. (2001) that developed a strategy for
the synthesis of a purification process based on a variety of chromatographic stages; the
MILP model they studied used physico-chemical data of a mixture of proteins. On the
other hand, a few years earlier Samsatli & Shah (1996a) studied the design problem for the
entire production of a unique product that included a fermentation stage followed by primary
separation steps and high resolution stages for a final purification. After this work a second
part dealt with scheduling decisions for a more accurate sequencing and timing determination
for each operation unit in the plant (Samsatli & Shah, 1996b).

In the year 2000 Montagna et al. began a series of collaborations that studied the design of
a biotechnological multi-product batch plant (Asenjo et al., 2000; Pinto et al., 2001) including
later synthesis decisions (Iribarren et al., 2004). Former work studied the production of 4
recombinant proteins where 6 steps of separation and purification followed the fermentation
process; this process was used a few years later by other authors as an example process to
test their own formulations (Dietz et al., 2005; Moreno et al., 2009a). On the other hand,
the work of Iribarren et al. (2004) was described by Moreno-Benito et al. (2014) as one of
the most relevant contributions to the area at that time because their MINLP formulation
addressed the combination of process synthesis decisions -selection of the microorganism
responsible of the biological process; and selection of separation and purifucation techniques-
plant allocation decisions -operation mode- and plant design decisions such as equipment
sizing.

After these papers, advances in biotechnological multi-product batch plants literature
have not been as much as those that can be found for chemical plants (see Barbosa-Póvoa
(2007) for an extended review); nevertheless most of the advances applied for chemical plants
can be also applied for bioprocesses. Among the papers in biotechnology are the work of
Srinivasan et al. (2003) who included the uncertainty of the demand in the design of a
bioreactor that produces penicillin; Dietz et al. (2005) included environmental considerations
to the design of a multi-product batch plant and Moreno & Montagna (2007b) developed a
model for the design and scheduling of a plant of 5 stages for a vegetable extraction.

1.3 Elements for the design and synthesis of a
biotechnological multi-product batch plant

In this work the design of a biotechnological multi-product batch plant with an optimization
based approach took into account design and synthesis decisions which will be explained
below.
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1.3.1 Synthesis decisions

Synthesis decisions make reference to the configuration of the plant taking into account 3
topics:

Allocation of tasks to equipment: This makes reference to the selection of one technique
among two or more that can perform the same downstream processing step.

Parallel units operating either in-phase or out-of-phase: Duplication of units in-
phase permits the elimination of bottlenecks due to equipment capacities as different units
process the incoming stream simultaneously (Voudouris & Grossmann, 1993). This decision
is used when the maximum capacity available is used allowing the processing of batches
of bigger sizes. The duplication of units out-of-phase, on the other hand, eliminates the
bottlenecks due to cycle times as different units process the incoming stream with different
initial times (Voudouris & Grossmann, 1993).

Location of intermediate storage: This decision is highly related to the used storage
policy and the objective is to reduce the idle times during production (Galiano & Montagna,
1993). According to Barbosa-Póvoa (2007) 5 policies can be identified:

• Zero-wait: the material is unstable and has to be processed immediately.

• Unlimited intermediate storage: the material is stable and can be arranged in one
or more storage vessels with an unlimited capacity.

• Finite intermediate storage: the material is stable and can be arranged in one or
more storage vessels with a finite capacity.

• Shared intermediate storage: the material is stable and can be arranged in one or
more storage vessels that can be shared with other material but not simultaneously.

• No intermediate storage: the material is stable but no storage vessels are available.
However, it may reside temporarily in the processing equipment where it has been
produced.

1.3.2 Design decisions

Design decisions correspond to the sizing of different process equipment which can be selected
among a continuous range of sizes or among a discrete set of available sizes. According
to Salomone et al. (1994) process equipment can be clasified into 3 types:

Batch intensive: these are the traditional batch stages in which the process material
remains in the unit for a time that depends on the process kinetics, that in turn
depends on concentration and temperature. Examples of these units are fermenters
and reactors.
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1.4 MINLP versus MILP 1 Introduction

Semi-continuous: these are the traditional semi-continuous stages that operate between
two batch stages. These units operate continuously but intermittently to transfer the
material among different batch stages. Examples of these units are heat exchangers.

Batch extensive: these equipments involve both items, batch and semi-continuous.
Examples of these units are filters and centrifuges that need feed and product tanks,
togheter to the semi-continuous item.

In this work batch and semi-continuous items are sized in stages that are batch intensive
and batch extensive.

1.4 Mixed Integer Non-Linear Programming
(MINLP) versus Mixed Integer Linear
Programming (MILP)

As stated by Grossmann et al. (2000) design decision problems can be written as a Mixed-
Integer Non-Linear Problem (MINLP) of the form:

minZ = f(x, y)
s.t. h(x, y) = 0

g(x, y) ≤ 0
x ∈ X, y ∈ {0, 1}

(1.1)

where f(x, y) is the objective function (e.g. cost), h(x, y) = 0 are equations that describe the
performance of the system, such as mass and/or energy balances, g(x, y) ≤ 0 are inequalities
that define specific restrictions to feasible options and at least one of these functions is
non-linear. x variables model equipment sizes and production times and volume and the y
variables are restricted to be 0 or 1 modelling action selection.

This problem has a unique global optimum if all of the functions involved are strictly
convex (Grossmann et al., 2000) otherwise finding a global optimum is not guaranteed. One
way to deal with non-convexities arising in the standard model of batch facilities is the
use of the logarithmic change of variables proposed by Kocis & Grossmann (1988) which
linearizes most of the functions and leads to a convex problem, approach that has been used
among others by Rippin (1993), Montagna et al. (2000) and Moreno et al. (2009b). Another
approach is the use of heuristic procedures (Grossmann et al., 2000). This was the option
selected by Pinto et al. (2001) among others.

Some other authors as Voudouris & Grossmann (1993), Moreno & Montagna
(2007b), Moreno & Montagna (2011) and Fumero et al. (2011) have modeled the design
problem as a Mixed-Integer Linear Problem (MILP or MIP) selecting equipment sizes among
a discrete set of available sizes. This alternative guarantees a global optimality in the solution
of the batch design problem (Voudouris & Grossmann, 1993). Moreno & Montagna (2011)
made a comparison between both MINLP and MILP approaches and conclude that although
the precision of the model is reduced in a MILP approach, a superior performance is achieved.
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1.5 Objectives 1 Introduction

A key feature in these design problems is the use of Big-M constraints to account for
the selection decisions despite of being problematic (Bosch & Trick, 2005). Some authors
that have included this type of constraints in their formulations are Gupta & Karimi
(2003), Corsano et al. (2009), Moreno et al. (2009a) and Moreno & Montagna (2012).
Obviously, these authors have found that the value of the Big-M parameters has a tremendous
impact on the solution time. See for example Montagna et al. (2004) who made a comparison
between the use of Big-M and convex-hull formulations; or Moreno & Montagna (2007b) who
had to test different values for Big-M parameters.

1.5 Objectives

1.5.1 Main Objective

The main objective of this work is to study the use of an optimization based approach for the
design of a biotechnological multiproduct batch plant with rigorous information of different
processes from a real plant.

1.5.2 Specific Objectives

The specific objectives of this work are:

• To investigate a formulation for the desing of multi-product batch plants that is robust,
scalable and reliable for its application in the design of real cases.

• To introduce a standard methodology, coming from the optimization field, to compare
different formulations for the design of multi-product batch plants.

• To define an appropriate methodology to estimate the parameters of the defined
optimization model based on rigorous information from real processes.

• To investigate the application of the developed methodology in the design of a
biotechnological multi-product batch plant using real data of production processes that
are actually part of a real multi-product batch plant.

1.6 Summary of methodology and principal
results

A first approach to study the design of a real biotechnological multi-product batch plant was
the use of the MINLP formulation proposed by Iribarren et al. (2004) using the DICOPT
solver in GAMS language; nevertheless it was found that their formulation was only reliable
for small plants with no more than 15 stages in total. A discussion of this fact can be found
in Sandoval et al. (2016) in Chapter 2.
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To avoid the problems that can be found in MINLP formulations a MILP reformulation
is proposed that in a first stage permits the selection of equipment sizes over a range of
continuous sizes (see Chapter 2); and in a second stage permits both, discrete and continuous
sizes (see Chapter 3).

Selection of techniques to perform a defined step is addressed with the introduction of
a route formulation that makes use of advanced reformulation techniques coming from the
mixed-integer-programming literature: clique constraints. This formulation avoids the use of
Big-M constraints.

The combination of the MILP reformulation with the clique constraints permits the
definition of a methodology that meets all the desired requirements: is scalabe, robust and
realiable for its application in the design of real multi-product batch plants.

As a final step of this work the proposed approach is used to study the design of the
real biotechnological multi-product batch plant. Mass balances allow the computation of the
parameters needed by the formulation and the obtained results illustrate the reliability of
the optimization based approach in the design of real multi-product batch plants. The use of
these type of models may achieve big savings in the cost of the main equipment of the plant.

Finally, it is important to highlight that the proposed approach takes at most a few
minutes to find an optimum solution leaving plenty of space for continuing the addition of new
and more complex constraints or objetive functions. In addition, lower level implementations
in C or C++ could improve timing performance and the complexity of the model as well.
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Chapter 2

MILP reformulations for the design of
biotechnological multi-product batch
plants using continuous equipment
sizes and discrete host selection

Published on Computers and Chemical Engineering at January 2016 (Sandoval, G., Espinoza,
D., Figueroa, N. y Asenjo, J.A. / Computers and Chemical Engineering 84 (2016) 1-11. See
appendix A)
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2 Design of multi-product batch plants

Abstract

In this article we present a new approach, relying on mixed-integer linear programming
(MILP) formulations, for the design of multi-product batch plants with continuous sizes
for processing units and host selection. The main advantage of the proposed approach is
its scalability, that allows us to solve, within reasonable precision requirements, realistic
instances. Furthermore, we show that many other alternatives are either numerically unstable
(for the problem sizes that we are interested in), unable to solve large instances, or much
slower than the proposed method. We present extensive computational experiments, which
show that we are able to solve almost all tested instances, and, in average, we are ten times
faster than alternative approaches. As we use a high level implementation language (AMPL)
we should get further time improvements if lower level implementations are used (C, C++).

Reproducibility of our results can be tested using our models and data available on-line
at BPLIB1.

Keywords: multi-product batch plant, MINLP, MILP, production path.

1Available in http://www.dii.uchile.cl/~daespino/
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2.1 Introduction 2 Design of multi-product batch plants

2.1 Introduction

Conventional multi-product batch process literature using an optimization-based approach
model the design and synthesis of such plants with Mixed-Integer Non-Linear Programming
(MINLP) formulations (Floudas, 1995). The usual objective is to minimize the investment
cost subject to the fulfillment of the production targets of a given set of products. Major
drawbacks are given by the combinatorial nature of mixed-integer programming and possible
nonconvexities due to non-linearities. In computational optimization numerical issues of these
formulations given by rounding errors, numerical instabilities and approximation errors are
well-documented (Goldberg, 1991; Koch, 2004; Margot, 2009; Vielma, 2013).

Since Robinson & Loonkar (1972) different procedures have been proposed to tackle
these problems (Reklaitis, 1990; Rippin, 1993; Barbosa-Póvoa, 2007; Verderame et al., 2010;
Nikolopoulou & Ierapetritou, 2012) but a method that is more efficient for a particular
example is hardly predictable (Ponsich et al., 2007) and nowadays the development of effective
solution approaches and algorithms remains very necessary (Grossmann & Guillén-Gosálbez,
2010).

The logarithmic change of variables proposed by Kocis & Grossmann (1988) linearizes
most of the functions and leads to a convex MINLP problem, approach used by Ravemark &
Rippin (1998) and Montagna et al. (2000) among others. Another approach chosen by Pinto
et al. (2001) and Ponsich et al. (2007) among others is the use of specially designed solvers
which can usually find good feasible solutions by the use of heuristic procedures (Grossmann
et al., 2000). In practice the best off the shelf solvers for this kind of problems are the
open source codes BONMIN and SCIP and the commercial solvers BARON and DICOPT
that stand out in Mittelmann’s benchmarks for optimization software (Mittelmann, 2013).
Nevertheless none of them guarantee convergence to a global optimum, converging in some
instances to local optima or not converging altogether. For the particular case of BARON
and DICOPT performance failures are reported for non-convex models (Ponsich et al., 2007;
Rebennack et al., 2011; Li et al., 2012); nevertheless even in cases where theoretically the
algorithms work, we found that in practice, they do not converge to the global optimum. We
have run precise experiments that demonstrate these failures in convex MINLP formulations
(see Section 2.2).

It is a fact that there is a huge gap between Mixed-Integer Linear Programming (MILP
or MIP) and MINLP solvers technology (Nowak, 2005). Nowadays mixed-integer linear
techniques are fast, robust and able to provide solutions to problems with up to millions of
variables (Geißler et al., 2012). Taking advantage of this Voudouris & Grossmann (1992)
used reformulation schemes to develop MILP models for the preliminary design of multi-
product batch plants, introducing binary variables for the selection of discrete available
equipment sizes. From this point, to the design decisions other were included as synthesis,
production planning and scheduling (Voudouris & Grossmann, 1993); design and planning in
a multiperiod scenario (Moreno & Montagna, 2007a); design of multi-product batch plants
considering duplication of units in series (Moreno et al., 2009b) and the design and planning
of multi-product batch plants using mixed-product campaigns (Corsano et al., 2009). Most
recently these MILP formulations have been used to account for the design and scheduling
of this type of plants (Fumero et al., 2011, 2012b,a) and for the design under uncertainty
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2.2 Current limitations 2 Design of multi-product batch plants

considering different types of decisions (Durand et al., 2012; Moreno & Montagna, 2012;
Durand et al., 2014; Moreno-Benito et al., 2014).

A key feature in these design problems is the use of Big-M constraints to account for
selection decisions despite being problematic (Bosch & Trick, 2005). Some authors that have
included this type of constraints in their formulations are Gupta & Karimi (2003); Corsano
et al. (2009); Moreno et al. (2009a); Moreno & Montagna (2012). Obviously, these authors
have found that the value of the Big-M parameters has a tremendous impact on the solution
time; see for example Moreno et al. (2007). In addition it has been proven experimentally
that other methods, as the convex hull formulation presented by Montagna et al. (2004) are
better to account for selection decisions.

In this paper we develop a robust methodology to solve the design problem of
a biotechnological multi-product batch plant in situations where equipment can be
manufactured according to customer needs, as fermentors or tanks in general. To do that,
we develop a MILP formulation which does not rely on the use of Big-M constraints and
does not use a discrete range of equipment sizes. To do that we use four basic techniques
(see Figure 2.1): First, an extension of the non-linear (but convex) formulation proposed by
Kocis & Grossmann (1988) is applied. Secondly, to deal with non-linear convex inequalities
a priori we constructed linear outer (or inner) approximations of them which allow us to
compute (a posteriori) true feasible solutions and lower (or upper) bounds. Thirdly, to
deal with integer variables, we used advanced reformulation techniques coming from the
mixed-integer-programming literature (clique constraints). Finally, once the initial problem
is transformed into a standard mixed-integer programming problem, it is possible to take
advantage of mature commercial MIP solvers.

This approach, at least in our experiments, is more stable numerically, scalable, and
faster to solve than current alternatives and can deal with the more general problem of
jointly selecting equipment sizes and alternative production paths for multiple products.
Using our approach, it is possible to quickly and accurately compute solutions at any desired
precision level. In our extensive computational experiments (see figure 2.11) we found that
current non-linear solvers only solved 43% of the instances generated for this study, while
our approach was able to solve over 95% of the studied instances in a running time that,
on average, was more than ten times faster than MINLP solvers in equivalent and standard
MINLP formulations. To make these comparisons we introduce the performance profiles; a
methodology borrowed from the optimization literature.

The rest of this paper is organized as follows. In section 2.2 typical drawbacks found
by a commonly used MINLP solver and the standard MINLP formulation is presented. In
section 2.3 classic and novel formulations for the design problem are described. Relevant
information about the methodology used to benchmark different formulations and to avoid
numerical instabilities is given in Section 2.4 and computational results are presented and
discussed in Section 2.5. Finally, the conclusions are presented in Section 2.6.

2.2 Current limitations

Our main objective is finding a robust and scalable methodology for the design of
biotechnological multi-product batch plant considering equipment sizing (design decisions)
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MINLP
non-convex

MINLP
convex

MILP
equipment sizing

MILP
equipment sizing

and route selection

ynj = ln(Y n
j )

Inner/Outer

approximations

Selection variables/

Clique constraints

MIP solver

Figure 2.1 – Basic techniques used to model synthesis and design decisions considering
continuous equipment sizes and discrete host selection.

and selecting the downstream processing stages (synthesis decisions). Given the complexities
that to date have been added to the original design problem we decided to go back to the
problem studied by Iribarren et al. (2004) where only design and synthesis decisions are
modeled. In their paper they designed a biotechnological batch plant for the production of
four recombinant proteins, i, where each can be synthesized by two different hosts, h, having
four microorganisms in total. In addition to that three of the fifteen processing stages, j, may
be performed by two different unit operations, d. In their formulation they used constant
size (Sijdh) and time (Tijdh) factors to model each stage; considered duplication of units in
parallel in-phase, Gjd, and out-of-phase, Mjd, in order to diminish either the equipment sizes
Vj or cycle times TLi, respectively, and used Big-M constraints to account for the selection
of hosts and equipment.

As a correctness test, we took the example presented in Iribarren et al. (2004) and splitted
into 16 different instances that only allow equipment selection. Then we tested two different
yet equivalent formulations based on their model but removing host selection2.

In the first (C1) the selection of hosts was eliminated by limiting the set of available hosts,
Hi, to just one per protein, and in the second (C2), by setting the values of the selection
binary variables to 1 for the selected hosts and 0 for those non-selected. If the solution is
being found by the solvers, we should observe two things:

2To further isolate the results obtained from problems with non-standard local-settings, the GAMS
modelling language was used and the experiments were run in the NEOS server (Gropp & Moré, 1997;
Czyzyk et al., 1998; Dolan, 2001) available in http://www.neos-server.org
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Table 2.1 – Comparison of the number of constraints and variables of some selected instances
solved using models that account for selection with Big-M constraints -models (C1) and (C2)-
and a classic formulation for design decisions only, (P1). All instances were solved using the
DICOPT solver.

Variables Constraints Status of
solutionDisc. Cont. Linear Non-linear

(C1) 480 185 303 10 Incorrect
(C2) 512 323 682 18 Incorrect
(P1) 360 71 179 9 Correct

(a) both model formulations (C1) and (C2) give the same solution, and

(b) the minimum of the separated instances is equivalent to the global minimum of the
problem with host selection.

Contrary to what we expected differences in the objective function value for both (C1) and
(C2) formulations went from 1% to 78% in the 16 instances studied (data not shown), and
even more striking, the solver finds a local minimum which is worse than those found for
most instances without host selection.

These numerical instabilities seem to be aggravated with size since it is known that
DICOPT works fine for small instances. Situation in accordance to the results obtained
by Ponsich et al. (2007). In order to show these differences in sizes we built Table 2.1 to
compare the number of constraints and variables involved in the smaller instances of the
cases (C1) and (C2), that were incorrectly solved according to the aforementioned results,
with the size of a smaller instance that was correctly solved by a classic formulation (P1) that
solves an equipment sizing problem similar to that presented by Iribarren et al. (2004), but
with no selection of hosts or equipments, and using DICOPT solver. This last formulation
is presented en Section 2.3.1.

2.3 Problem Formulation

Two major contributions are presented in this section. First, clique constraints are introduced
to formulate the discrete part of the model allowing the selection of the production path
without the use of Big-M constraints, in models (P2) and (P4). Second, a new approach,
in Section 2.3.2, to handle non-linearities using standard reformulation techniques from the
optimization field that permits the use of linear solvers leading to more reliable results and
faster computing time. The relation among the four different models studied is shown in
Figure 2.2.
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Equipment
sizing

Route
selection

MINLP

MILP

(P1) (P2)

(P3) (P4)

Figure 2.2 – Formulations compared in this article. Model (P1) is the most basic formulation
that only includes design decisions. Model (P2) includes the selection of the downstream
processes without the use of Big-M constraints. Models (P3) and (P4) are the transformed
models of (P1) and (P2), respectively, using our proposed inner and outer approximations.

2.3.1 MINLP formulation

The equipment-sizing problem (P1)

In this section we present the most basic formulation for the design of biotechnological
multi-product batch plants as only equipment sizing and duplication of units in parallel
are considered.
The plant consists of a sequence of batch, semi-continuous and chromatographic stages used
to manufacture different products i; where semi-continuous as well as chromatographic stages
are composed by the semi-continuous items plus feed and product tanks. At each stage j there
are X2

j groups of units operating in parallel out-of-phase and each group is conformed by X1
j

units operating in-phase. For semi-continuous or chromatographic stages feed and product
tanks can only be duplicated out-of-phase. Single production campaigns are considered and
batches are transferred from one stage to the next without delay (zero wait policy).

The objective is to minimize the investment costs of main equipments of the plant (see
equation (2.1)) given fixed production targets, di, over a time horizon δ.

min cost =
∑

j∈E1
X1
jX

2
j

(
c1
jY

1
j
γ1j
)

+
∑

j∈E2∪E3

[
X2
j

(
c1
jY

1
j
γ1j
)

+X2
j

(
c2
jY

2
j
γ2j
)

+X1
jX

2
j

(
c3
jY

3
j
γ3j
)]

+ vρδ (2.1)

Variables Y ·j represent the different equipment sizes. Parameters c·j and γ·j are cost
coefficients distinctive for each kind of equipment and v is a slack variable included to assure
feasibility (Montagna et al., 2004).

Making the change of variables introduced by Kocis & Grossmann (1988) we get the new
objective function (2.2).
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min cost =
∑

j∈E1
c1
j exp
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j + x2

j + y1
jγ

1
j

)

+
∑

j∈E2∪E3

[
c1
j exp

(
x2
j + y1

jγ
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)
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j exp
(
x2
j + y2

jγ
2
j

)

+c3
j exp

(
x1
j + x2

j + y3
jγ

3
j

)]
+ vρδ (2.2)

At each stage and for each product the size of the units must allow the processing of
the incoming batch which can be splitted among X1

j units to not surpass the upper bound
capacity of the equipment. In batch stages this constraint can be written as equation (2.3a);
convexified in equation (2.3b).

Y 1
j ≥

S1
ijY

4
i

X1
j

∀i ∈ I, j ∈ E1 (2.3a)

y1
j + x1

j ≥ s1
ij + y4

i ∀i ∈ I, j ∈ E1 (2.3b)

As in semi-continuous or chromatographic stages duplication is allowed just for semi-
continuous items, feed and product tanks are sized using constraints (2.4) and (2.5).

y1
j ≥ s1

ij + y4
i ∀i ∈ I, j ∈ E2 ∪ E3 (2.4)

y2
j ≥ s2

ij + y4
i ∀i ∈ I, j ∈ E2 ∪ E3 (2.5)

Chromatographic columns have to process the incoming batch and both duplication in-
phase and out-of-phase are allowed. Duplication in-phase is modeled in size constraint (2.6)
since this permits smaller units and duplication out-of-phase is reflected in time constraints.

y3
j + x1

j ≥ s3
ij + y4

i ∀i ∈ I, j ∈ E3 (2.6)

The cycle time for each product i, Y 5
i , is defined as the time elapsed between the

production of two consecutive batches and is given by the larger operating time, Tij, among
the stages in the process. This time can be decreased if a duplication of units out-of-phase
is used:

Y 5
i ≥

Tij
X2
j

∀i ∈ I, j ∈ E (2.7)

As batch stages operate for a fixed time, T 0
ij, cycle time constraint in its convex form is given

by equation (2.8):

y5
i + x2

j ≥ t0ij ∀i ∈ I, j ∈ E1 (2.8)

Semi-continuous stages, on the other hand, operate during a time that depends on the
final batch size, Y 4

i . For those stages the cycle time is constrained as in equation (2.9).

Y 5
i ≥

T 1
ij

Y 4
i

X1
j Y

3
j

X2
j

∀i ∈ I, j ∈ E2 (2.9a)
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y5
i + x2

j ≥ t1ij + y4
i − x1

j − y3
j ∀i ∈ I, j ∈ E2 (2.9b)

Lastly, chromatographic stages are modeled considering both fixed and variable operation
times leading to the highly non-linear constraint (2.10).

Y 5
i ≥

T 0
ij + T 1

ij
Y 4
i

X1
j Y

3
j

X2
j

∀i ∈ I, j ∈ E3 (2.10a)

y5
i + x2

j ≥ ln
[
exp

(
t0ij
)

+ exp
(
t1ij + y4

i − x1
j − y3

j

)]
∀i ∈ I, j ∈ E3 (2.10b)

Production targets for all products, di, must be satisfied within the time horizon δ.

∑

i∈I

diY
5
i

Y 4
i

≤ δ + vδ (2.11a)

∑

i∈I

di
δ

exp
(
y5
i − y4

i

)
≤ 1 + v (2.11b)

Finally, variables for duplication in-phase X1
j are restricted to integer values using

constraints (2.12) and (2.13), where z3
jm are binary variables and M a set of available units

to operate in parallel in-phase. The same is valid for variables for duplication out-of-phase,
X2
j .

x1
j =

∑

m∈M

z3
jm ln(m) ∀j ∈ E (2.12)

∑

m∈M

z3
jm = 1 ∀j ∈ E (2.13)

Appropriate upper and lower bounds are also considered for all of the variables.

The design problem with selection of routes and equipment sizing
(P2)

More recent models (like Iribarren et al. (2004)) take into account the joint selection of the
production processes including selection of hosts and equipment. Their formulation uses
classical Big-M constraints. Since we know that these constraints are problematic (Bosch
& Trick, 2005) in this work we propose a different way to formulate the integer part of the
problem replacing the Big-M by clique constraints. With this formulation all constraints are
ignored except the upper bound on the variables (Dietrich et al., 1993). Model (P2) includes
the sizing of the equipment, the duplication of units in parallel working in-phase and out-of-
phase and accounts for the selection of the global process selecting routes which are defined
as the series of unit operations used to purify a protein given a certain host that synthesizes
it. In this way once the pair product-host, (i, h), is selected the set of stages conforming the
process is fixed.
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The objective function becomes:

min cost =
∑
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3
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+ vρδ (2.14)

Since some stages can be unused and just one route per protein can be selected we
introduced two binary variables: z1

ih and z2
j . z

1
ih is equal to 1 when for product i synthesis

host h is selected and 0 otherwise and z2
j is 1 when stage j is used to process at least one of

the products and 0 otherwise. Constraint (2.15) enforces to chose just one host h to produce
the protein i and constraint (2.16) permits stage j to be used just in case at least one product
needs it to be processed.

∑

(i,h)∈ U

z1
ih = 1 (2.15)

z2
j ≥ z1

ih ∀(i, h, j) ∈ R|(i, h) ∈ U (2.16)

For chromatographic stages constraints take the form of equations (2.17)- (2.20) that are
trivially satisfied if host h is not selected to produced protein i (z1

ih = 0). When the host h
is selected for protein i (z1

ih = 1) and the stage j has to be performed to process product i
then z2

j = 1 and constraints are the same as in previous formulation (Section 2.3.1).

y1
j z

2
j ≥ s1

ihjz
1
ih + y4

ihz
1
ih ∀(i, h, j) ∈ R, j ∈ E3 (2.17)

y2
j z

2
j ≥ s2

ihjz
1
ih + y4

ihz
1
ih ∀(i, h, j) ∈ R, j ∈ E3 (2.18)

y3
j z

2
j + x1

jz
2
j ≥ s3

ihjz
1
ih + y4

ihz
1
ih ∀(i, h, j) ∈ R, j ∈ E3 (2.19)

y5
ihz

1
ih + x2

jz
2
j ≥ ln

[
exp

(
t0ihj
)

+ exp
(
t1ihj + y4

ih − x1
j − y3

j

)]
z1
ih

∀(i, h, j) ∈ R, j ∈ E3 (2.20)

If stage j is not necessary for the process (z2
j = 0); then equipment sizes are set to 0 with

constraints as (2.21) and no unit is considered to conform that stage (constraint (2.22)):

y1,LO
j z2

j ≤ y1
j ≤ y1,UP

j z2
j ∀j ∈ E (2.21)

∑

m∈M

z3
jm = z2

j ∀j ∈ E (2.22)
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Finally, in the planning horizon constraint (2.23) only the terms associated to the selected
host per protein are considered.

∑

(i,h)∈ U

dih
δ
z1
ih exp

(
y5
ih − y4

ih

)
≤ 1 + v (2.23)

2.3.2 Mixed-Integer linear formulations

To obtain more accurate solutions and, specially in larger instances, in a reasonable running
time we present a MILP reformulation, which can be solved using any commercial MILP
solver. These models are basically equal to their MINLP counterpart but replacing the non-
linear objective and time constraints with sets of linear functions which give arbitrarily good
lower or upper approximations of their respective original functions. The actual optimal
solution is in between both approximations and the precision level is given by the number
of cutting points selected to generate the set of linear functions to replace each non-linear
function and the actual selection of the approximation points used for example equispaced
or non-equispaced. In this way the accuracy of the solution can be as high as desired at the
cost of longer computing time.

Inner and outer approximations

Given a convex function of one variable g(x) ≤ 0 and a set of points {xk}k=1,...,n in the domain
of g then, is easy to see that:

{x|g(x̂k) +∇g(x̂k)(x− x̂k) ≤ 0 k = 1, ..., n} ⊇ {x|g(x) ≤ 0} (2.24)

and

{
x|g(x̂k) +

g (x̂k+1)− g (x̂k)

x̂k+1 − x̂k
(x− x̂k) ≤ 0 k = 1, ..., n

}
⊆ {x|g(x) ≤ 0}, (2.25)

which allows for straightforward lower and upper approximations of g. Using this fact, it is
easy to find inner and outer approximations of the problems (P1) and (P2).

In fact, for each non-linear constraints of the form gj(x) ≤ 0, and considering an arbitrary
set of cutting points in the domain {xk}k=1,...,n the consideration of the set of constraints

gj(x̂k) +∇gj(x̂k) (x− x̂k) ≤ 0 k = 1, ..., n (2.26)

which leads to a larger feasible set, as can be seen in Figure 2.3a. On the other hand, we
consider the set of constraints

gj(x̂k) +
gj (x̂k+1)− gj (x̂k)

x̂k+1 − x̂k
(x− x̂k) ≤ 0 k = 1, ..., n− 1 (2.27)

which leads to a smaller feasible set, as can be seen in Figure 2.3b.
In the same way, the minimization of the cost objective function, f(x), can be replaced

by
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min v
s.t. v ≥ f(x̂k) +∇f(x̂k)(x− x̂k) k = 1, ..., n

(2.28)

which leads, together with an outer approximation of constraints, to a lower bound of the
true cost. The objective function can also be replaced by

min v

s.t. v ≥ f(x̂k) +
f (x̂k+1)− f (x̂k)

x̂k+1 − x̂k
(x− x̂k)

k = 1, ..., n

(2.29)

which leads, together with an inner approximation of constraints, to an upper bound of the
true cost.

In what follows, ∇f(x̂k) or f(x̂k+1)−f(x̂k)

x̂k+1−x̂k
= αk in the lower or upper approximation,

respectively, x̂k = bk and f(x̂k) = βk.

Reformulation for the equipment-sizing problem (P3)

The assumptions for this model are the same as those for the MINLP proposed in
Section 2.3.1.

Objective function Cost functions of equation (2.2) are individually linearized using the
approximations given in Section 2.3.2 which leads to equation (2.30):

min cost =
∑

j∈E1
v1
j +

∑

j∈E2∪E3

[
v1
j + v2

j + v3
j

]
(2.30)

Constraints Batch and semi-continuous stages and binary variables for duplication of
units constraints in this MILP model are the same as those in the MINLP model shown
in Section 2.3.1.

Chromatographic stages Size constraints for feed and product tanks and column size
constraint are the same as those in the MINLP model shown in Section 2.3.1.

Time constraint (2.31) is obtained from the linearization of equation (2.10):

y5
i + x2

j ≥ α6ij
k

(
y4
i − x1

j − y3
j − b6ij

k

)
+ β6ij

k ∀i ∈ I, j ∈ E3, k ∈ K6 (2.31)

Planning horizon From linearization of equation (2.11) constraint (2.32) is obtained:

∑

i∈I

v7
i ≤ 1 (2.32)
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(a) Outer approximation

b2 b3 b4b1 = LB b5 = UB
x

f
(x

)

(b) Inner approximation

b2 b3 b4b1 = LB b5 = UB
x

f
(x

)

Figure 2.3 – Feasible region (patterned area) of (a) outer and (b) inner approximations (dashed
lines) of an exponential function (solid line). Points bi are the cutting points and LB and UB
are the lower and upper bounds of x.
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Auxiliary variables Cost functions in the objective function are linearized as shown
in equation (2.33) and planning horizon constraint is linearized as shown in equation (2.34):

v1
j ≥ α1j

k

(
x1
j + x2

j + γ1
j y

1
j − b1j

k

)
+ β1j

k ∀j ∈ E1, k ∈ K1 (2.33)

v7
i ≥

di
δ
α7i
k

(
y5
i − y4

i − b7i
k

)
+
di
δ
β7i
k ∀i ∈ I, k ∈ K7 (2.34)

Reformulation for the design problem considering route selection
and equipment sizing (P4)

Similar to the model presented in Section 2.3.2 this model was built based on its MINLP
counterpart and most of constraints remain the same.

The objective function is the same as that from model (P3) and for stages design only
differences are encountered for time constraints of chromatographic stages. In this way,
applying the inner or outer approximations to equation (2.20) constraint (2.35) is obtained:

y5
ih + x2

j ≥ α6ihj
k

(
y4
ih − x1

j − y3
j

)
+
(
β6ihj
k − α6ihj

k b6ihj
k

)
z1
ih

∀(i, h, j) ∈ R, j ∈ E3, k ∈ K6 (2.35)

This set of equations together with constraints of the type of (2.36) for variables y1
j , y

2
j ,

y4
ih, y

5
ih, x

1
j and x2

j will model the same situation as in (P2).

y3,LO
j z2

j ≤ y3
j ≤ y3,UP

j z2
j ∀j ∈ E3 (2.36)

If z2
j = 0 constraint (2.35) is trivially satisfied. On the other hand if z1

ih = 0
constraint (2.35) becomes:

x2
j ≥ α6ihj

k

(
−x1

j − y3
j

)
∀(i, h, j) ∈ R, j ∈ E3, k ∈ K6 (2.37)

Since α6ihj
k is a positive parameter constraint (2.37) will be always satisfied only if |x1

j |>
|y3
j | or if both variables are bigger than or equal to 0. To assure this data preprocessing is

necessary. As x1
j is always bigger than 0 we normalized variables y3

j by their lower bound.
More details in section 2.4.3.

For the case of planning horizon constraint little difference is found between (2.32) and
(2.38). The last one takes into account host selection:

∑

(i,h)∈ U

v7
ih ≤ 1 (2.38)

Finally, constraints for auxiliary variables v1
j , v

2
j , v

3
j and v7

ih are different from those for
problem (P3) to account for route selection:

v1
j ≥ α1j

k

(
x1
j + x2

j + γ1
j y

1
j

)
+
(
β1j
k − α1j

k b
1j
k

)
z2
j ∀j ∈ E1, k ∈ K1 (2.39)
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v1
j ≤ z2

j v
1,UP
j ∀j ∈ E1 (2.40)

v7
ih ≥

di
δ
α7ih
k

(
y5
ih − y4

ih

)
+
di
δ

(
β7ih
k − α7ih

k b7ih
k

)
z1
ih ∀(i, h) ∈ U , k ∈ K7 (2.41)

v7
ih ≤ z1

ihv
7,UP
ih ∀(i, h) ∈ U (2.42)

If z2
j = 0 constraints (2.39) to (2.42) are trivially satisfied and if z1

ih = 0 then
constraints (2.41) and (2.42) are trivially satisfied. Finally, if z1

ih = 1 and z2
j = 1 then

constraints (2.39) to (2.42) are the same as those in the MILP formulation without route
selection.

2.4 Methods

2.4.1 Solvers and modelling language

For MINLP problems the open source BONMIN 1.5 and SCIP 3.0.1 solvers were studied.
In our computational tests SCIP uses SoPlex 1.7.1 as the LP solver and BONMIN (with its
default algorithm, B-Hyb) uses Cbc 2.7.1 as the MIP solver and Ipopt 3.10.0 with MUMPS
as linear solver. For the case of BONMIN we tested 3 over 5 available algorithms: B-Hyb the
default algorithm, B-Ecp a specific parameter setting of B-Hyb that can be faster in some
cases (Bonami & Lee, 2013) and B-OA using CPLEX as the MILP solver that according
to Mittelmann (2013) can be faster for convex instances. In preliminary studies solvers
as KNITRO and COUENNE were also tested to solve our MINLP formulations, but their
performance in our simplest instances were poorer than that for the selected solvers.

For MILP problems the commercial CPLEX solver in its version 12.4.0.0 was used as it
is one of the top performer from the literature (Mittelmann, 2013).

All models were coded using the AMPL modelling language.

2.4.2 Execution environment

Each instance was executed using a single thread on a Intel(R) Xeon(R) CPU
E5620@2.40GHz with a running time limit of 48 hours, an optimality relative gap of 0.1%
for models (P3) and (P4) and 2% for (P1) and (P2), and a maximum memory usage of 6Gb
of RAM.

The difference in the prescribed optimality gap for MILP and MINLP solvers is given by
the fact that while MINLP problems are solved to find the actual minimum cost function
within a defined optimality gap, and therefore an a priori optimality gap, MILP models find
true upper and lower bounds for the actual cost function leading to an a posteriori optimality
gap that is computed afterwards. As will be shown in Section 2.5.2, this difference ensure
that our results are comparable.
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2.4.3 Methodology

Instances

To compare different approaches two set of instances, with randomly generated data between
given reasonable upper and lower bounds, were built: “sizing instances”, to compare simpler
models (P1) and (P3), and “routing instances” to compare more complex models (P2) and
(P4). We considered a variety of different number of proteins to be produced (4 to 6), number
of stages to conform the process (11 to 65), number of routes to synthesize the product (20
to 65) and different cost coefficients values (1% to 110% of nominal values).

Benchmarking

In order to compare the model-solver pairs studied in this work we introduce a new tool for
process engineers that was introduced in the optimization field by Dolan & Moré (2002) to
compare different optimization software: the performance profile.

As stated by Dolan & Moré (2002) the performance profile for a solver is the “cumulative
distribution for a performance metric”, for example computing time. In this way things like
how many instances a solver is able to solve given some stop criteria like those shown in
Section 2.4.2, or how fast it solves different instances of the same type of problem can be
seen graphically.

As an example of how to read these plots, in Figure 2.4a it can be seen that when using
17 cutting points 40% of the instances were solved to an a posteriori optimality gap up to
2% while when using 33 cutting points leads to an optimality gap under 0.5% for the same
amount of instances.

Data pre-processing

It is known that zero-one problems of large-scale are hard combinatorial optimization
problems (Crowder et al., 1983; Koch, 2004; Applegate et al., 2007) reason why in order
to obtain reliable solutions preprocessing data is necessary. The use of tight bounds and the
normalization of the variables are necessary to decrease numerical errors.

Although not all of our instances are big enough to need data preprocessing all were
subjected to the same treatment:

• All variable bounds and parameters associated to variables Y ·j and Y ·i were normalized
by their respective lower bounds.

• Size and time factors were normalized and dimensionless considering the respective
associated units. For example, as size factor for tanks have units of batch size divided
by a volume this parameters are dimensionless by multiplying by the lower bound of
the final batch size and dividing by the respective tank lower bound.

• Lower bounds for the cycle time were tightened using time constraints and upper bounds
for final batch product were tightened using size constraints.
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Table 2.2 – Sizes of sample instances solved using non-linear model (P1).

Variables Constraints
Discrete Continuous Linear Non-linear

Small 264 57 139 9
Medium1 840 157 407 5

2.5 Results and Discussion

In this section we show the robustness of our proposed MILP transformations and its
superiority over classic MINLP formulations with Big-M constraints using performance
profiles, a methodology borrowed from the optimization literature. Our approach is not
only able to find correct solutions in realistic situations unlike MINLP formulations but also
in a small fraction of the time required by those approaches. Major implications of these
features are the exactness of the solutions that make this information reliable for decision-
making; and as time reduction is significant numerous alternatives can be tested with the
same formulation or with complexified models that may address the combination of different
types of decisions.

This presentation is organized as follows: first, we describe the instances generated for
comparison then discuss the selection of the cutting points for the proposed approach and
finally, we compare MINLP and MILP formulations in terms of their performance solving
the sets of instances using time as the metric.

2.5.1 Size of instances

To compare the most basic and easy to solve problems (P1) and (P3) a set of 186 instances
(“sizing instances”) were generated varying the number of proteins to be produced (2 to
6), the number of stages that conform each process (11-35) and the cost coefficient values
(1% - 110% of nominal values). Sizes of these instances in terms of number of variables and
constraints are shown in tables 2.2 and 2.3, where “Small” corresponds to an example of one
of the smaller instances solved with different models and “Medium1”, to an example of the
bigger instances solved for these two models. As it can be seen in both tables new auxiliary
variables and the sets of linear functions generated to replace non-linear restrictions makes
the problem from 7 to 12 times bigger in terms of linear constraints when 33 cutting points
are used for linearization with an increase in about 50% of continuous variables. However, as
we will see later, this increase in variables and constraints leads to smaller execution times
and more accurate results.

To test models (P2) and (P4), as they were posed to solve more complex scenarios, a set
of 249 new and bigger instances (“routing instances”) were generated varying the number
of proteins to be produced (4 to 6), the number of stages conforming the global process
(18 to 65) and the number of routes available to produce the proteins (20 to 40). Sizes of
these instances in terms of number of variables and constraints are shown in tables 2.4 and
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Table 2.3 – Sizes of sample instances solved using linear model (P3) with 33 cutting points for
linear inner approximation.

Variables Constraints
Discrete Continuous Linear Non-linear

Small 264 87 1357 -
Medium1 840 237 3096 -

Table 2.4 – Sizes of sample instances solved using non-linear model (P2).

Variables Constraints
Discrete Continuous Linear Non-linear

Small 279 57 251 9
Medium1 881 157 719 5
Medium2 488 152 1262 22
Large 1794 613 15766 462

2.5, where “Medium2” corresponds to an example of one of the smaller “routing instances”
solved with models (P2) and (P4) and “Large”, to an example of the bigger instances solved
in this work. As it can be seen in both tables, in comparison with tables 2.2 and 2.3, the
number of discrete variables increases by 5% with the addition of selection variables, z, and
the number of linear constraints increases by 15% for (P4) and is around double for (P2).
As we will see later, this addition permits the resolution of more complex scenarios, while at
the same time not affecting execution time or optimality gap in comparison with the more
basic formulation.

Table 2.5 – Sizes of sample instances solved using linear model (P4) with 33 cutting points for
linear inner approximation.

Variables Constraints
Discrete Continuous Linear Non-linear

Small 279 87 1539 -
Medium1 881 237 3602 -
Medium2 488 229 4829 -
Large 1794 926 46489 -
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2.5.2 Selection of cutting points

Contrary to MINLP problems (P1) and (P2) that are solved to an a priori optimality gap,
models (P3) and (P4) give true upper and lower bounds for the actual cost function of each
instance and therefore an optimality gap that is computed a posteriori. Figure 2.4a shows
the performance profiles of the gaps obtained a posteriori for the “sizing instances” solved
with 17, 33 and 65 cutting points that generate 16, 32 and 64 linear functions for the inner
approximations, respectively. Here we can see that our linear model is able to solve all
instances with a maximum gap of 5% in less than 16 seconds when using 17 cutting points,
and a gap of less than 0.5% in less than 64 seconds when using 65 cutting points. The
running time profiles can be seen in Figure 2.4b. If 65 cutting points had been selected, the
optimality gap for non-linear solvers would have been around 0.5% as that is the worst gap
obtained a posteriori with CPLEX (Figure 2.4a). Given this, in our final experiments we use
a set of 33 cutting points, since this option gives the largest improvement in gap versus the
increase in execution time, and a slightly bigger optimality gap criteria of 2% was selected
for non-linear solvers.

Once the number of points is selected, the specific values of these points must be chosen.
The most obvious choice is equispaced points which, for the (relevant) exponential function ex

generates small errors for low values of x and large errors for high values. Another alternative
is to use the expression (2.43), where N is the total number of cutting points including −∞
as x1 and x̄ as the upper bound of x. This is a good approximation in order to minimize the
maximum value of the error (see Figure 2.5).

xk = 2 ln

(
k − 1

N − 1

)
+ x̄ ∀k ∈ 2...N (2.43)

We can see in Figure 2.5 that the choice of equispaced points leads to better
approximations for low values of x, but much worse for high values. For our numerical
experiments, equispaced points work better: while execution time remains the same for both
approaches, a posteriori gaps were slightly worse for non-equispaced points (Figure 2.6).

This leaves open important questions about the optimal point selection to improve the
precision of upper and lower approximations. Our preliminary simulations seem to indicate
that giving substantial attention to smaller values of x could significantly improve the results,
but this is left for further research.

2.5.3 Equipment sizing: comparison of problems (P1)

and (P3)

We tested three different combinations of solvers-models: the linear model (P3) was solved
using CPLEX as solver while the non-linear model, (P1), was solved using SCIP and 3 of the
5 algorithms that are available for using BONMIN which were chosen based on BONMIN
users’ manual and Mittelmann’s benchmarking (Mittelmann, 2013) information. All of the
instances were solved using the stopping criteria and conditions mentioned in Section 2.4.2.

Figure 2.7 shows the performance profile of running time using BONMIN-Hyb, BONMIN-
Ecp, BONMIN-OAcpx, SCIP and our CPLEX-based approach. From this, we can see that
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Figure 2.4 – Comparison of performance profiles of (a) relative optimality gap obtained a
posteriori and (b) the logarithm of the running time of “sizing instances” solved with linear
model (P3) using 17, 33 and 65 cutting points for lower and upper approximations with an
optimality relative gap of 0.1%.
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Figure 2.5 – Comparison of absolute errors using 2 different sets of 33 cutting points where
f(x) are the linear functions used to approximate the exponential function between 2 cutting
points.
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Figure 2.6 – Comparison of performance profiles of a posteriori gaps obtained using 33
cutting points to solve model (P4) where f(x) are the linear functions used to approximate
the exponential function between 2 cutting points. Time limit was set in 12 hours.
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Figure 2.7 – Comparison of performance profiles of the logarithm of running time of “sizing
instances” solved using models (P1) and (P3) with an optimality relative gap of 0.1% for the
linear solver and 2% for non-linear solvers.

problem (P1) was solved faster using any BONMIN algorithm than using SCIP solver.
Moreover, SCIP only worked well in about the 75% of the instances, while BONMIN is
able to solve the 85% of the instances using the OA algorithm and the 100% of the studied
instances using either the Ecp or the Hyb algorithm. On the other hand, model (P3) solved
using CPLEX is able to solve all of the instances studied, as well as BONMIN, but taking
much less time than the problem (P1). As B-Ecp and B-Hyb seems to be equally good for
those instances that take longer to be solved we decided to use as the performance metric
the ratio of the computing time of the model-solver versus the best time of all of the model-
solvers, denoted by τ . Those performance profiles are plotted in Figure 2.8 where we can
see even more clear than the CPLEX-based approach is always better than all of the other
options and that Ecp algorithm is always better than Hyb for this asked optimality gap.

2.5.4 Routes selection: comparison of problems (P2)

and (P4)

As a test of correctness, models (P2) and (P4) were solved using the generated “sizing
instances” where just one route was available to produce each product. Contrasting these
results to those obtained by (P1) and (P3) it can be seen in Figure 2.9 that both formulations,
for equipment sizing and considering routes, are consistent solving the same amount of
instances in virtually the same amount of time.

Performance profiles of the relative difference between the value of the objective function
obtained with simpler -(P1) and (P2)- and more complex formulations -(P3) and (P4)- are
presented in Figure 2.10 where it can be seen that the differences between MILP formulations,
as well as for MINLP formulations solved using BONMIN, are at most the optimality gap
asked for each solver. The case of SCIP is different because in almost the 10% of the instances
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Figure 2.8 – Comparison of performance profiles of the logarithm of the ratio of the computing
time of the pair model-solver versus the best time of the pairs model-solvers for “sizing
instances” solved with models (P1) and (P3) with an optimality relative gap of 0.1% for the
linear solver and 2% for non-linear solvers.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

log2 (Time [s])

so
lv

ed
in

st
an

ce
s

to
ta

l
in

st
an

ce
s

(P1) SCIP

(P2) SCIP

(P1) B-Ecp

(P2) B-Ecp

(P3) CPLEX lower app

(P3) CPLEX upper app

(P4) CPLEX lower app

(P4) CPLEX upper app

Figure 2.9 – Comparison of performance profiles of the logarithm of running time of “sizing
instances” solved using models (P1), (P2), (P3) and (P4) with an optimality relative gap of
0.1% for the linear solver and 2% for non-linear solvers.
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Figure 2.10 – Comparison of performance profiles of relative difference between simple and
more complex formulation for “sizing instances”. Models (P1) and (P2) were solved to an
optimality gap of 2% and (P3) and (P4), to an optimality gap of 0.1%.

the solver gives results with a difference in the objective function between models (P1) and
(P2) greater than the optimality gap which shows that this solver is not reliable to solve this
type of problems.

As a final step in this work we compare in Figure 2.11 the performance profiles of total
running time obtained after solving all instances generated for this work (435 in total). Here
we can see that for “routing instances” (P4) is much more robust than (P2), that was not
able to solve any of those cases. In average (geometric average), the instances take about
40 seconds to be solved using model (P4), which is about the 3% of the time required by
(P2)-BONMIN and less than the 1% of the time required by (P2)-SCIP. Nevertheless, for
some punctual instances that represent the 4.6% of the instances studied, the time and/or
memory usage were not enough to get the desired optimality gap. From this it can be stated
that for the solution of more realistic instances or even to solve real problems considering
continuous equipment sizes, the formulation proposed in this work is much more reliable and
faster than the usual and widely studied standard MINLP formulation.

2.6 Conclusions

In this work we present a scalable approach to solve, within reasonable running times and
quality assurance requirements, the problem of designing a biotechnological multi-product
batch plant that support continuous equipment sizes and discrete host and/or process
selection, up to sizes of real instances and that can be applicable to any kind of multi-product
batch plant.

The proposed method was proved to be more numerically stable than other alternative
approaches for the same problem giving true optimal solutions, and in general, faster than
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Figure 2.11 – Comparison of performance profiles of the logarithm of running time of “routing”
and “sizing instances” solved using models (P2) and (P4) with an optimality relative gap of
0.1% for the linear solver and 2% for non-linear solvers.

other tested approaches. Our method takes advantage of two facts: the continuous relaxation
of the feasible region is convex and bounded (which allow us to build, up front, inner or
outer approximations of the feasible space, and thus report true upper/lower bounds for each
instance); and the fact that mixed-integer linear solvers are much more stable numerically
and scalable in size than MINLP algorithms. Also, this approach relies on “off the shelve”
optimization and modelling software, which makes it more amiable to practitioners.

To assert our claims, we borrow algorithm comparison tools from the optimization
community, which are an interesting form to test the quality of competing algorithms to
tackle the same class of problems.

Although, in a real scenario, semi-continuous units such as centrifuges and microfilters,
among others, are available only in discrete sizes, unlike tanks that can be built according to
customer needs, we feel that the proposed approach is robust enough to consider such issues,
however, this was left as a next step in our research. Additionally, to increase the precision
of our results for real cases, it is possible to explore a two step approach where after using
the proposed method to obtain upper and lower approximations for the objective function
we can refine different upper and lower variable bounds making them tighter and perform a
re-optimization.

Finally, if true speed is the goal; we know that low-level implementations of dynamic
inner/outer approximation can provide further time reductions, however, we feel that this is
beyond the scope of this work.
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Optimization of a biotechnological
multi-product batch plant design for
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3 Design of a real plant

Abstract

In this work a mixed-integer linear programming (MILP) formulation recently developed
by us is used to optimize the equipment sizes of a hypothetical new biotechnological multi-
product batch plant, based on information of real known processes for the production of 4
different biotechnological products. Knowing the specific steps conforming the downstream
processing of each product, size and time factors were computed and used as parameters to
solve the aforementioned MILP reformulation. New constraints were included to permit the
selection of some equipment -such as centrifuges and membrane filters- in a discrete set of
sizes. For equipment that can be built according to customer needs -such as fermenters and
stirred tanks- the original formulation was retained.

Computational results show the ability of this methodology to deal with real data giving
reliable solutions for a multi-product batch plant composed of 44 unit operations in a
relatively small amount of time showing that in the case studied it is possible to save up
to a 66% of the capital investment in equipment given the cost data used.

Keywords: multi-product batch plant, biotechnological products, MILP.
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3.1 Introduction

The design of multi-product batch plants using an optimization based approach has been
studied for more than 40 years and different approaches to deal with the complexity of the
optimization models that result in non-convex mixed-integer non-linear problems (MINLP)
goes from the development of new algorithms that are able solve these type of problems (Kocis
& Grossmann, 1989; Viswanathan & Grossmann, 1990; Borisenko et al., 2011; Li et al., 2012)
to the reformulation of them into mixed-integer linear problems (MILP) (Montagna et al.,
2004; Moreno & Montagna, 2011; Sandoval et al., 2016) that can be solved using the known
accurate commercial solver CPLEX. In the majority of the cases the aim of these efforts is
to be able to find the optimal design of multi-product batch plants in real scenarios which
is, according to Barbosa-Póvoa (2007), still a challenge.

In this work the methodology developed by Sandoval et al. (2016) is applied to a real case
scenario. The production process of 4 recombinant proteins -Products 1 to 4- are known and
with this information a new biotechnological multi-product batch plant is designed. Product
2 and 3 are synthesized as part of inclusion bodies in recombinant Escherichia coli while
Product 1 and 4 are synthesized by recombinant Saccharomyces cerevisiae as intracellular
and extracellular products, respectively. Each production process is composed of 8 to 21
processing stages of which about 14 can be shared by 2 or more individual processes. As the
equipment involved in each stage may be selected from the equipment available offered by
different manufacturers or sized according to the customer needs, a new selection decision
was introduced to the routing model presented by Sandoval et al. (2016), which now allows
for the selection of a discrete number of possible sizes when it is necessary.

The computational results obtained show that the methodology developed earlier is
capable of solving the optimization problem of a real type biotechnological multi-product
batch plant -with 44 operational stages- reliably and in a small amount of time.

The rest of this paper is organized as follows. In Section 3.2 known processes to
manufacture the 4 proteins studied are presented together to the proposed structure of a
multiproduct batch plant that produce them. In Section 3.3 the Problem Formulation and
the equations used for parameter estimation is presented. Results are discussed in Section 3.4
and conclusions are presented in Section 3.5.

3.2 Design of a biotechnological multiproduct
batch plant

3.2.1 Processes description

In this section the downstream processes of the 4 recombinant proteins studied are described.
According to Imperatore & Asenjo (2001) Product 1 is purified in 18 stages, while Products
2 and 3 need 20 and 15 isolation and purification steps, respectively. Product 4 on the other
hand, only needs 7 processing stages given its nature of extracellular product. Flowsheets of
the 4 processes are shown in Figures 3.1 to 3.4.
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Table 3.1 – Production data for the Purification facility (Imperatore & Asenjo, 2001).

Product
Cycle
time
(h)

Final batch
Suite

Weeks of
production

Num.
of
batches

Max. num.
of batchessize

(kg)
volume

(L)

P1 120 6.005 285 1 41 48 49
P2 24 3.777 135 2 15 16 90

4 20 16 120
P3 32 7.385 285 3 41 95 184

4 11 25 49
P4 36 14.043 285 2 11 38 44

The original plant is divided into two facilites. In the first, fermentation and primary
purification stages are included; in the second, high resolution steps are performed in 4
different suites, each processing one or more products per year. General production data for
these suites is presented in Table 3.1. The maximum number of batches per year, in the last
column, corresponds to the maximum capacity of the plant given the cycle times, the annual
production weeks for each process and 144 work hours per week.

Product 1

Product 1 (P1) is an intracellular protein synthesized by S. cerevisiae in a fermentation
process that lasts 23 hours. After this step a concentration stage follows performed by a
microfilter were cells are collected in the retentate stream for a subsequent homogenization
step. In order to wash the homogenization buffer a concentration together with a
diafiltration process follows before cellular deactivation in a stirred tank. After that, a
new homogenization step is performed followed by a sucrose gradient centrifugation for the
collection of a small fraction containing the protein of interest.

At another facility, the purification process is continued with a solubilization process and
a centrifugation to concentrate the product. Then the mixture is subjected to a reducing
environment followed by a gel filtration chromatography and a reaction of oxidation to refold
the protein. Before the next chromatographic step -a reversed phase chromatography- a
cross-flow ultrafiltration is performed to concentrate the product mixture. The protein of
interest is then precipitated and centrifuged before a dissolution step to be later fed to a gel
filtration chromatographic colum. Finally a concentration and diafiltration step is performed.

Product 2

Product 2 (P2) is an intracellular protein synthesized by E. coli as inclusion bodies in a
fermentation process that lasts 11.5 hours. Cell harvest is performed using a centrifugation
step followed by the cell lysis and the harvesting of the inclusion bodies. After 3 consecutive
washing and centrifugation steps the protein is subjected to a an oxidative environment
followed by the refolding of the protein. Before a cation exchange chromatography a
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Fermenter
Fermentation

Microfilter1
Concentration

Homogenizer1
Cell Lysis

Microfilter2
Conc/Diafiltration

Reactor1
Host cell inact.

Homogenizer2
Homogenization

Centrifuge1
Sucrose

gradient cent.

Tank1
Solubilization

Centrifuge2
Concentration

Reactor2
Reduction

Chromatographic C1
Gel Filtration

Reactor3
Oxidation

Ultrafilter1
Concentration

Chromatographic C2
RP-HPLC

Tank2
Precipitation

Centrifuge3
Concentration

Tank3
Dilution

Chromatographic C3
Gel Filtration

Ultrafilter1
Conc./Diafiltration

Figure 3.1 – Production process for Product 1, an intracellular protein synthesized in
Saccharomyces cerevisiae.
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microfiltration setp is carried out in order to concentrate the mixture and then, in the second
facility, 2 more chromatographic stages are carried out: gel filtration and anion exchange. A
dilution and concentration steps followed by a new gel filtration and a hydrophobic interaction
chromatography precede a concentration and diafiltration step as the last stage of the process.

Product 3

Product 3 (P3) is also an intracellular protein synthesized by E. coli as inclusion bodies but in
a fermentation process that lasts 25 hours. Cell harvest is performed using a centrifugation
step followed by a cell washing, a cell concentration and followed by cell disruption. A
new centrifugation step is carried out in order to capture the inclusion bodies which are
then suspended an subjected to a reducing environment. The next stage, in which the
protein is refolded, is followed by a concentration, a cation exchange chromatography and
a concentration and diafiltration step. In the second facility, three chromatographic stages
-anion exchange, hydrophobic interaction and cation exchange- are performed before the last
concentration and diafiltration step.

Product 4

Product 4 (P4) is a recombinant protein synthesized by S. cerevisiae as an extracellular
product in a fermentation process that lasts 122 hours. After fermentation a centrifugation
step to discard cells is performed followed by a microfiltration step to clarify the stream
before two chromatographic stages: a cationic exchange chromatography and an hydrophobic
interaction chromatography.

In the second facility, two ion exchange chromatographies follow the process -anion and
cation exchange, respectively- ending with a concentration and diafiltration stage.

3.2.2 Estimation of processes data and plant cost

Equipment sizes

Based on mass balances and the processes data given by Imperatore & Asenjo (2001),
different equipment sizes for each productive process were estimated. A 20% safety factor
was considered for tanks in general and a 15% for semi-continuous items different from
chromatographic columns that were sized using a relatively low capacity usage.

Estimated equipment sizes are given in Tables 3.2 to 3.5. The Times column corresponds
to the number of times that the stage is used before passing to the next step. V , V 1 and V 2

are the sizes of batch, feed and product tanks, respectively; R is the semi-continuous item
size; V 3 the chromatographic column size and T the operation time of the stage in hours.
Tanks, reactors and chromatographic columns are sized in L, membrane filtration systems
in m2, centrifuges in 1000 · m2 and homogenizers in L/h. For all products, V 2 in the last
membrane filtration step is the size of the final product.
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Figure 3.2 – Production process for Product 2, an intracellular protein synthesized in
Escherichia coli.
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Figure 3.3 – Production process of Product 3, an intracellular protein synthesized in
Escherichia coli.

40



3.2 Design of a biotechnological multiproduct batch plant 3 Design of a real plant

Table 3.2 – Original equipment sizes and operation times for the production of Product 1, an
intracellular protein synthesized in S. cerevisiae.

Stage Times V/V1 V2 V3/R T

F
er

m
en

ta
ti

on

1 fer 1 12500 23
2 mf1 1 12500 21 2.5
3 hom1 1 1964 3697 3
4 mf2 1 1964 17 8
5 rct1 1 1473 8
6 hom2 1 1621 4067 3
7 cnt1 1 17826 463 56 15

P
u
ri

fi
ca

ti
on

8 tnk1 8 250 2
9 cnt2 8 250 38 95 5

10 rct2 4 225 1
11 chr1 4 225 203 453 24
12 rct3 4 405 6
13 uf1 1 1620 3 2
14 chr2 8 176 159 50 4
15 tnk2 8 635 1.5
16 cnt3 8 635 63 399 3
17 tnk3 5 226 2
18 chr3 5 226 90 254 24
19 mf3 1 452 356 21 6
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Table 3.3 – Original equipment sizes and operation times for the production of Product 2, an
intracellular protein synthesized in E. coli.

Stage Times V/V1 V2 V3/R T

F
er

m
en

ta
ti

on

1 fer 1 15000 11.5
2 cnt1 1 15000 1500 15 5
3 hom1 1 1650 2718 4
4 cnt2 1 1650 413 39 2
5 tnk1 1 1650 1
6 cnt3 1 1650 413 52 1.5
7 tnk2 1 1650 1
8 cnt4 1 1650 413 78 1
9 tnk3 1 1650 1

10 cnt5 1 1650 413 389 8
11 rct1 1 743 12
12 rct2 1 2673 18
13 mf1 1 2673 16 4
14 chr1 1 668 601 308 10

P
u
ri

fi
ca

ti
on

15 chr2 1 601 541 5600 24
16 chr3 2 271 244 51 10
17 tnk4 1 1063 2
18 mf2 1 1063 3 4
19 chr4 1 750 675 1800 24
20 chr5 2 338 304 141 5.6
21 mf3 1 608 169 10 7.5
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Table 3.4 – Original equipment sizes and operation times for the production of Product 3, an
intracellular protein synthesized in E. coli.

Stage Times V/V1 V2 V3/R T

F
er

m
en

ta
ti

on

1 fer 1 12500 25
2 cnt1 1 12500 1250 15 4
3 tnk1 1 12500 1
4 cnt2 1 12500 2500 7 9
5 hom1 1 2750 4529 4
6 cnt3 1 2750 344 11 12
7 tnk2 1 375 1
8 rct1 1 3125 1
9 rct2 1 4688 26

10 mf1 8 586 5 3
11 chr1 1 1000 1100 462 9
12 mf2 1 1100 34 6

P
u
ri

fi
ca

ti
on 13 chr2 1 550 495 283 12

14 chr3 4 124 111 126 8
15 chr4 4 111 100 63 8
16 mf3 1 401 356 31 4

Table 3.5 – Original equipment sizes and operation times for the production of Product 4, an
extracellular protein synthesized in S. cerevisiae.

Stage Times V/V1 V2 V3/R T

F
er

m
en

ta
ti

on

1 fer 1 9125 122
2 cnt1 1 9125 1014 1 12
3 mf1 2 507 425 1 5
4 chr1 3 283 255 308 15
5 chr2 6 128 115 173 8

P
u

ri
fi

ca
ti

o
n 6 chr3 3 230 207 60 12

7 chr4 3 207 186 156 8
8 mf2 1 558 356 9 15
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Figure 3.4 – Production process of Product 4, an extracellular protein synthesized in
Saccharomyces cerevisiae.

Equipment costs

Units suchs as tanks, reactors and fermenters may be built according to customers needs
therefore the information needed for their sizing corresponds to cost coeficients for functions
of the type cjV

γj
j and lower and upper size bounds. Original data for fermenter and reactor

was taken from Iribarren et al. (2004) and for tanks, from Harrison et al. (2015). The
corresponding data is presented in Table 3.6.

For the case of the semi-continuous items costs are determined according to the selected
unit offered by the manufacturer. For these cases cost and equipment sizes are given in
discrete sets. Data used in this paper is presented in Table 3.7.

3.2.3 Multiproduct batch plant

Given the description of the 4 downstream processes it is possible to suggest that some
equipment can be shared by 2 or more processes as is the case of the centrifugation step used
for cell harvesting in the isolation processes of Products 2 and 3.

Isolation and purification processes for each individual protein and the identification of
the stages than can be shared by 2 or more processes in the proposed multiproduct batch
plant is shown in Table 3.8. For comparison purposes, stages are organized as “Fermentation”
and “Purification” steps.
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Table 3.6 – Cost coefficients and variable bounds needed to size batch units. Costs can be
calculated in U.S.$ with the function cjV

γj
j . Data was actualized to year 2012 using CE index:

year 2000, 394.1 ; year 2012, 584.6.

Item
Cost coefficients Size bounds (L)

cj γj lower upper

Fermenter 1491 0.6 20 100000
Reactor 1454 0.5 20 100000
Tank 35945 0.1168 200 5000

492 0.6217 5000 50000

3.3 Problem formulation

3.3.1 Mathematical modeling

The routing formulation proposed by Sandoval et al. (2016) permits the sizing of the
equipment according to each of the different type of stages, j, present in a biotechnological
multi-product batch plant. In this article, that formulation was modified to account for the
selection of semi-continuous items in a discrete set of sizes and costs. The model considers
the duplication of units in parallel working in-phase, using continuous variables x1

j , and out-
of-phase, using continuous variables x2

j ; it also accounts for the selection of the global process
selecting routes which were defined as different sets of downstream processing stages used
to purify a protein given a certain host that synthesizes it. The selection of one route per
protein and therefore the use of just some of the possible stages is carried out by the variables
z1
ih and z2

j . The former is 1 when for product i synthesis host h is selected and 0 otherwise
and the last is 1 when stage j is part of at least one of the routes selected and 0 otherwise.

Main variations are presented in the following paragraphs.

Objective function

The objective is to minimize the investment cost of the main equipment of the plant given
fixed production targets, di, over a time horizon δ. As the original cost functions are non-
linear, continuous variables v.j are defined to transform former functions into sets of linear
functions. The resulting objective function is given by equation (3.1) that is associated to
constraints as (3.2) for batch stages different to stirred tanks, such as fermenters and reactors
in subset Ê1.

min cost =
∑

j∈E1
v1
j +

∑

j∈E2∪E3

[
v1
j + v2

j + v3
j

]
(3.1)

v1
j ≥ α1j

k

(
x1
j + x2

j + γ1
j y

1
j

)
+
(
β1j
k − α1j

k b
1j
k

)
z2
j ∀j ∈ Ê1, k ∈ K1 (3.2)
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Table 3.7 – Available cost and equipment sizes for semi-continuous units. Costs are in 1000
U.S.$. Data actualized with CE index: year 1998, 389.5 ; year 2012, 584.6.

Item Size Cost

Micro/ultrafilter (m2) 5 150
(Harrison et al., 2015) 15 175

30 210
55 230

Centrifuge (1000 m2) 10 60
(Harrison et al., 2015) 50 85

100 190
210 505

Homogenizer (L/h) 55 15
(Harrison et al., 2003) 105 38

290 53
700 83

2100 110
4500 155

Chromatographic column (L) 1 8
(Harrison et al., 2015) 2 10

4 12
8 17

15 20
35 90
65 190

150 240
250 300
400 400
580 600

1000 800
1600 1100
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Table 3.8 – Downstream processing stages that conform a multiproduct biotecnological batch
plant that produces 4 different recombinant proteins synthesized in E. coli and S. cerevisiae as
intra and extracellular products.

Stage Description P1 P2 P3 P4

F
er

m
en

ta
ti

on

1 fer Fermentation x x x x
2 mf1 Concentration x
3 cnt1 Cell harvest x x
4 tnk1 Cell wash x
5 cnt2 Cell concentration x
6 hom1 Cell lysis x x x
7 mf2 Conc./ Diafiltration x
8 rct1 Cellular inactivation x
9 hom2 Homogenization x

10 cnt3 Concentration x
11 cnt4 IB harvest x
12 tnk2 IB wash x
13 cnt5 IB capture x
14 tnk3 IB wash x
15 cnt6 IB capture x x
16 tnk4 IB suspension x x
17 cnt7 Extraction x
18 rct2 Reduction x
19 rct3 Oxidation x x
20 rct4 Oxidation titration x
21 mf3 Concentration x x
22 cnt8 Cell slurry x
23 mf4 Clarification x
24 chr1 SP-Sepharose FF x x x
25 mf5 Conc./ Diafiltration x
26 chr2 HIC x

P
u

ri
fi

ca
ti

on

27 tnk5 Solubilization x
28 cnt9 Concentration x
29 rct5 Reduction x
30 chr3 Gel filtration x x
31 rct6 Oxidation x
32 uf1 Concentration x
33 chr4 RP-HPLC x
34 tnk6 Precipitation x
35 cnt10 Concentration x
36 chr5 Q-Sepharose FF x x
37 chr6 Q-Sepharose HP x
38 tnk7 Dilution x x
39 mf6 Concentration x
40 chr7 Gel filtration x x
41 chr8 HIC x x
42 chr9 SP-Sepharose FF x
43 chr10 SP-Sepharose HP x
44 mf7 Conc./ Diafiltration x x x x
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where α1j
k , b1j

k and β1j
k are the parameters used to build the set of linear constraints and K1

the set of cutting points used.
For these mentioned batch stages former cost functions are given by equations as (3.3).

cost = c1
j · exp

(
x1
j + x2

j + γ1
j y

1
j

)
∀j ∈ Ê1 (3.3)

And for the particular case of stirred tanks in set Ē1 -as a singular batch step or as a part
of a semi-continuous stage-, found cost data (see Table 3.6) shows a two piecewise function
that was modeled using constraint (3.4).

cost = c1s
j · exp

(
x3
j + γ1s

j y
1
j

)
+ c1b

j · exp
(
x3
j + γ1b

j y
1
j

)
∀j ∈ Ē1 (3.4)

where x3
j = x1

j + x2
j if the stirred tank is a batch stage or x3

j = x2
j if the tank is part of a

semi-continuos stage.
When stirred tanks form part of semi-continuous or chromatographic stages, variables v1

j

and v2
j are constrained with equations as (3.5) and (3.6).

v1
j ≥ α1sj

k

(
x3
j + γ1s

j y
1
j

)
+
(
β1sj
k − α1sj

k b1sj
k

)
z2
j ∀j ∈ Ē1, k ∈ K1 (3.5)

v1
j ≥ α1bj

k

(
x3
j + γ1b

j y
1
j

)
+
(
β1bj
k − α1bj

k b1bj
k

)
z2
j ∀j ∈ Ē1, k ∈ K1 (3.6)

with α1bj
k , α1sj

k , b1bj
k , b1sj

k , β1bj
k and β1sj

k being the parameters used to build the set of linear
constraints and K1 the set of cutting points used.

Finally, the costs of semi-continuous and chromatographic units are constrained using
equations as (3.7). c3∗

j , in dimensions equivalent to the cost of other equipment, is calculated
as y3

j in constraints (3.8) and (3.9).

v3
j ≥ α3j

k

(
x1
j + x2

j + c3∗
j

)
+
(
β3j
k − α3j

k b
3j
k

)
z2
j ∀j ∈ E2 ∪ E3, k ∈ K3 (3.7)

Constraints

Sizing and timing constraints are basically the same as those presented by Sandoval et al.
(2016). Major differences are given by the introduction of binary variables for the selection
of the available equipment sizes and costs.

As was previously stated semi-continuous items including chromatographic columns are
only available in a discrete number of sizes. In order to achieve this type of selection variables
as z5

jk were introduced to the model which are restricted by constraints (3.8) and (3.9) that
are of the same type of those used to define the number of parallel units in each stage.

y3
j =

∑

k∈K8

z5
jk ln(uk) ∀j ∈ E∗ (3.8)

∑

k∈K8

z5
jk = z2

j ∀j ∈ E∗ (3.9)

where uk is k-th element of the set of available equipment sizes, UE∗ , defined for each subset
of stages E∗, that is to say, centrifuges, micro/ultrafilters, homogenizers and chromatographic
stages.
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Table 3.9 – Data used to estimate size and time factors for Product 1, an intracellular protein
syntehsized in S. cerevisiae.

Stage η X f N Jconc NP vs

fer 1.000 1.000 0.000
mf 0.990 7.000 0.000 0 0.200
hom 0.900 1.000 0.100 6
mf 0.991 2.000 0.000 8 0.080
rct 0.950 1.000 0.500
hom 0.810 1.000 0.100 8
cnt 0.850 24.971 10.000 20.0
tnk 0.990 1.000 3.202
cnt 0.850 6.667 0.000 0.5
rct 0.950 1.000 2.000
gf 0.950 1.667 0.000
rct 0.950 1.000 1.000
mf 0.998 1.148 0.000 0 0.030
chr 0.980 1.667 0.000
tnk 0.750 1.000 3.000
cnt 0.850 9.000 0.000 0.5
tnk 0.980 1.000 1.000
gf 0.950 1.667 0.000
mf2 0.993 1.267 0.000 8 0.030

3.3.2 Size and time factors

Given the knowledge of each individual downstream processing stage and of the corresponding
equipment parameters mass balances were solved and constant size and time factors were
computed. Size factors for product i in stage j (in g/L) for items in batch stages, Sij; and
for feed and product tanks, S1

ij and S2
ij, respectively, are calculated using equation (3.10):

Sij =
Vj
Bi

(3.10)

with Vj [L] being the actual tank volume in Tables 3.2 to 3.5; and Bi [g], equal to Y 4
i in the

nomenclature used by Sandoval et al. (2016), the batch size of the product i at the end of
the process shown in Table 3.1. This last parameter was estimated using the broth volume
in the fermenter (80% of the tank volume), the concentration of product in the fermentation
broth -2.5 g/L for Product 1; 2 g/L for Products 2 and 3; 3 g/L for Product 4-, and the
overall mass yield given by the product of the yields in each stage, η, shown in Tables 3.9
to 3.12.

Operation time for each non-batch stage is modelled with equation (3.11):

49



3.3 Problem formulation 3 Design of a real plant

Table 3.10 – Data used to estimate size and time factors for Product 2, an intracellular protein
syntehsized in E. coli.

Stage η X f N Jconc NP vs

fer 1.000 1.000
cnt 0.850 10.000 200.0
hom 0.810 1.000 0.100 7
cnt 0.800 3.000 20.0
tnk 0.950 1.000 2.000
cnt 0.800 4.000 20.0
tnk 0.950 1.000 2.000
cnt 0.800 4.000 20.0
tnk 0.950 1.000 2.000
cnt 0.800 4.000 0.5
rct 0.950 1.000 24.000
rct 0.950 1.000 2.600
mf 0.983 30.000 0 0.030
chr 0.950 1.111
gf 0.950 1.111
chr 0.950 1.111
tnk 0.950 1.000 1.094
mf 0.997 1.417 0 0.030
gf 0.950 1.111
chr 0.950 1.111
mf2 0.991 3.600 8 0.030
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Table 3.11 – Data used to estimate size and time factors for Product 3, an intracellular protein
syntehsized in E. coli.

Stage η X f N Jconc NP vs

fer 1.000 1.000
cnt 0.800 10.000 200.0
tnk 0.980 1.000 9.000
cnt 0.800 5.000 200.0
hom 0.910 1.000 0.100 7
cnt 0.950 8.000 20.0
tnk 0.950 1.000 0.091
rct 0.950 1.000 24.000
rct 0.950 1.000 0.500
mf 0.987 14.063 0 0.030
chr 0.950 0.909
mf 0.991 2.000 8 0.030
chr 0.950 1.111
chr 0.950 1.111
chr 0.950 1.111
mf2 0.992 1.125 8 0.030

Table 3.12 – Data used to estimate size and time factors for Product 4, an extracellular protein
syntehsized in S. cerevisiae.

Stage η X f N Jconc NP vs

fer 1.000 1.000
cnt 0.800 9.000 7000.0
mf3 0.992 6.186 3 0.200
chr 0.950 1.111
chr 0.950 1.111
chr 0.950 1.111
chr 0.950 1.111
mf2 0.992 1.565 8 0.030
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Tij = T 0
ij + T 1

ij

Bi

Rj

(3.11)

with Tij [h] being the time needed for the step j to process i; T 0
ij [h] the equipment startup

time; T 1
ij a constant time factor or duty factor; and Rj, equal to Y 3

j in previous nomenclature,
the semi-continuous equipment size in units according to the equipment type (see Table 3.7).

Data used to estimate time or duty factors are given in Tables 3.9 to 3.12. In these tables
η is a mass yield, X is a volume reduction factor and f a dilution factor. For membrane
filtration systems, N is a ratio between the buffer volumes added and the fixed retentate
volume; and Jconc in m3

m2·h is a flux in the concentration process. For the case of homogenizers,
NP is the number of passes through the homogenizer; and finally, vs in 103 mm/h is the
settling velocity needed in the case of centrifuges.

Cross-flow filtration

This step is used for the removal of suspended particles, recovery of cells from fermentation
broth, and clarification of homogenates containing cell debris and both of them may be
followed by the diafiltration of the retentate (stream with larger particles) (Green & Perry,
2007). This last step is essentially a washing step that can be used either to remove more
impurities or to increase yield by recovering more product as permeate in clarification process.
Diafiltration is performed maintaining constant the level of the feed or retentate tank by the
addition of a suitable solvent while the permeate is removed through the membrane (Hearn,
2000).

For a batch operation the design equation of the filtration unit is given by equation (3.12)
(Green & Perry, 2007):

A =
V0

t

(
1− 1

X

Jconc
+

N
X

Jdiaf

)
(3.12)

where A is the membrane area, V0 is the initial retentate volume, X < 40 is the volume
reduction factor given by the ratio between the initial retentate volume and the final retentate
volume, N is the ratio between the buffer volumes added and the fixed retentate volume.
Jconc is the flux in the concentration process (volumetric permeate flow rate/membrane area)
and Jdiaf is the flux in the diafiltration process. Values for Jconc went from 0.2 in first stages
to 0.03 in the final step (Iribarren et al., 2004). Jdiaf should be smaller than Jconc (Hearn,
2000); their value was considered as 3

4
Jconc when necessary.

Operation time can be written from equation (3.12) as equation (3.13):

Ti,mf [h] = T 0
i,mf [h] +

V0 [m3]

Bi [kg]

(
1− 1

X

Jconc
[
m3

m2·h

] +
N
X

Jdiaf
[
m3

m2·h

]
)

Bi[kg]

Amf [m2]
(3.13)

Then, time factor T 1
i,mf , can be computed using equation (3.14):

T 1
i,mf

[
m2 · h
g

]
=
V0[m3]

Bi[kg]

(
1− 1

X

Jconc
[
m3

m2·h

] +
N
X

Jdiaf
[
m3

m2·h

]
)
· 1[kg]

1000[g]
· 1

0.85
(3.14)
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Finally, this stage yield is given by equation (3.15a) when this step is used for
concentration and by equation (3.15b) when this step is used for clarification. Si is the
observed solute passage that can be computed as the ratio between the concentration of the
protein in the permeate and its concentration in the feed stream. If the solute is fully retained
Si = 0 and 1 for a fully passing solute (Green & Perry, 2007).

ηi,mf = e−Si(N+lnX) (3.15a)

ηi,mf =
(
1−X−Si

) (
1− e−SiN

)
(3.15b)

Centrifugation

Centrifugation utilizes the density difference between the solids and the surrounding fluid
and is often used when solid particles are small and hard to filter (Bell, 1989).

Centrifuges costs are estimated using a Σ factor that is equivalent to a transversal area.
Based on the settling velocity of the solid, vs, and the volumen to be treated, V0, this factor
can be computed using equation (3.16):

Σ[m2] =
(V0 [m3])

(t [h])
(
vs
[
m
h

]) (3.16)

Then, time factor T 1
i,cnt, is computed using equation (3.17):

Ti,cnt [h] = T 0
i,cnt [h] +

V0 [m3]

vs
[
m
h

]
·Bi [g]

1

106

Bi [g]

Σ [103 m2]
(3.17)

from where

T 1
i,cnt

[
m2 · h
g

]
=

V0 [m3]

103 · vs
[
mm
h

]
·Bi [g]

1

0.85
(3.18)

Based on Hatti-Kaul & Mattiasson (2003) the settling velocity was estimated to be
0.2mm/h for E. coli and 7mm/h for S. cerevisiae.

Homogenization

For high pressure homogenizers, the fraction of protein released depends on the operational
pressure and the number of passes through the homogenizer (Doran, 2012).

According to Pinto et al. (2001) homogenization time is proportional to the volume fed to
the homogenizer, Vi,hom (L) = V0,hom ·NPi,hom, and inversely proportional to the homogenizer
capacity, Capi,hom (L/min), where V0,hom corresponds to the volume received from previous
stage plus a 10% extra volume of lysis buffer if needed (Harrison et al., 2003). With this,
equation (3.11) takes the form of equation (3.19):

Ti,hom [h] = T 0
i,hom [h] +

(V0,hom [L]) (NPi,hom)

Bi [g]

Bi [g]

Capi,hom
[
L
h

] (3.19)

Therefore time factor T 1
i,hom can be calculated using equation (3.20),
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T 1
i,hom

[
L

g

]
=

(V0,hom [L]) (NPi,hom)

Bi [g]

1

0.85
(3.20)

Based on data given in Bell (1989) and Clonis (1990) the number of passes NP was
considered to be 7 in the case of E. coli and 8 for S. cerevisiae. As no especific kinetic data
was known, yields were considered to be between 0.8 and 0.9.

Chromatographic separations

As explained by Doran (2012), the basis of chromatography is the selective retardation of
solute molecules during passage through a bed of resin particles.

In the processes studied, two major types of liquid chromatographic separations can be
found: gel filtration and adsorption chromatography.

Adsorption chromatographic columns are sized taking into account the amount of protein
that can be adsorbed into the column, Bi,chr, which is in turn related to the final batch size
(Pinto et al., 2001):

Bi,chr[kg] =
(
Vchr[m

3]
)

(πi)

(
βi,chr

[
kg

m3

])
=

Bi [kg]
NE∏

n=chr

ηin

(3.21)

with Vchr being the column volume; βi,chr the column capacity; πi the fraction of the maximum
capacity that is being used by the adsorbed protein; and NE the number of total stages.
From this, the column size factor can be computed with equation (3.22):

S3
i,chr

[
L

g

]
=

1

πiβi,chr

NE∏

n=chr

ηin

=
Vchr [L]

Bi [g]
(3.22)

The operation time of the chromatographic step is given by (3.23):

Ti,chr =
Vfeed + Vwash + Velution + Vregeneration

Achrvchr
(3.23)

with Vfeed the volume of solution with protein to be purified, Vwash the buffer wash volume
used to eliminate proteins not bound to the resin, Velution the volume of buffer used to recover
the protein and Vregeneration the volume of buffer used to regenerate the column.

Considering the time factors, the operation time can be computed using equation (3.24):

Ti,chr [h] = T 0
i,chr [h] +

([Vfeed + Velution] [m3]) (h [m])

(Bi [kg])
(
vchr

[
m
h

]) Bi [kg]

(Achr [m2])(h[m])
(3.24)

If the column hight is set to 0.25 m based on data of Imperatore & Asenjo (2001), and
3 column volume are used to wash and regenerate the resin, respectively, then the constant
time factor can be computed as:
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T 0
i,chr [h] =

6 · A[m2] · h[m]

A[m2] · v
[
m
h

] =
1.5

v
(3.25)

Finally, factor T 1 is calculated using equation (3.26).

T 1
i,chr

[
L · h
g

]
=

([Vfeed + Velution] [m3]) (h [m])

(Bi [kg])
(
vchr

[
m
h

]) =

(
Ti,chr − T 0

i,chr

)
[h] · Vchr [m3]

Bi [kg]
(3.26)

In gel filtration, a constant time was considered independent of the feed stream.
For adsorption chromatography a velocity of 5.5 m/h was considered for ionic-exchange
resins and for hydrophobic resins, 4 m/h. These velocities were defined based on
GE Healthcare Life Sciences handbooks that can be downloaded from their web page
(http://www.gelifesciences.com/ ).

3.3.3 Computational tools / Execution environment

The MILP model studied was coded using the AMPL modelling language and different
instances were solved using the commercial CPLEX solver in its version 12.4.0.0. The
execution environment was given by a single thread on a Intel(R) Xeon(R) CPU
E5620@2.40GHz with an optimality relative gap of 0.1% and 256 cutting points for an a
posteriori gap up to 0.12%.

3.4 Results and Discussion

3.4.1 Cost of the real plant

The real plant considers both fermentation and purification facilities.
The fermentation facility produces the 4 products in a single productive line, therefore

cost was estimated based on a plant configuration as that shown in Table 3.8. The equipment
sizes for each stage were set as the maximum size needed among the 4 processes; and for
semi-continuos items, that size was selected among those available.

The purification facility cost was estimated as the addition of the 4 suites, each one
sharing the same stages as in Table 3.8. For those units, the bigger size among the processes
was considered.

Estimated costs are summarized in Table 3.14 along with a comparison between the
original and the optimized facilities. These results are discussed in Sections 3.4.3 and 3.4.4.

3.4.2 Number of cutting points and a posteriori gaps

As established in previous work (Sandoval et al., 2016) the approach of defining lower and
upper approximations for non-linear functions in constraints and the objective function gives
true upper and lower approximations for the actual optimal plant cost. Therefore a small a
posteriori gap between both approximations is expected.

55



3.4 Results and Discussion 3 Design of a real plant

Table 3.13 – Average execution time and relative a posteriori gaps for the purification facility
instance solved 100 times.

Cutting points
Execution time (s)

gap (%)
upper approx. lower approx.

32 3.78 1.83 0.54
64 5.05 6.46 0.30
128 13.10 13.79 0.13
256 38.65 32.09 0.11

Taking the purification facility as an example to study, different number of cutting points
were considered to solve the instance: 32, 64, 128 and 256. Execution times and a posteriori
gaps were obtained for a set of 100 runs. Results are shown in Table 3.13. 256 cutting points
were selected to solve the instances studied since this gives an a posteriori gap very close
to the solver optimality relative gap and take less than a minute to solve the instance. For
bigger instances such as that for the overall multiproduct batch plant, a larger time was
obtained but is still small enough (about 6 minutes) considering that the a posteriori gap is
close 0.11%.

3.4.3 Original purification facility versus corresponding

stages in a multi-product batch plant

The original purification facility is divided into 4 suites and the maximum capacity of
production for a time horizon of one year is shown in Table 3.1. With this information
plus the equipment cost data in Tables 3.6 and 3.7 the optimization of the purification plant
defined as a part of the hyphothetical multiproduct batch plant in Table 3.8 was carried
out. The optimization results together to a comparison between real and optimized costs are
presented in Table 3.14.

As expected, if the optimization is performed over each individual suite the optimized
suite is between 20 to 46% less expensive, and more over, if a unique production line is
considered, costs can be saved up to a 32% in comparison to the real case. The difference is
even bigger if the actual production plant is taken into account with differences up to 68%
in the equipment costs (data not shown). In that scenerio an optimization model as the one
presented in this article is not just useful in the evaluation of the project but very necessary
to design an optimal and not oversized plant.
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Table 3.14 – Comparison between the costs of the original and the optimized facilities
considering the maximum capacity of the original purification plant and a time horizon given
by the number of production weeks. Costs are calculated in U.S.$ based on data for year 2012.

Plant Original Optimized
Difference

(%)

Fermentation Plant 7 317 406
Purification Plant 21 487 703 14 561 500 32

Suite 1 3 494 168 1 893 510 46
Suite 2 8 010 547 6 182 200 23
Suite 3 1 511 030 1 117 190 26
Suite 4 8 417 957 6 619 020 22

3.4.4 Optimization of the “global” multiproduct batch

plant of 44 stages

The structure of the multiproduct batch plant proposed in section 3.2.3 was determined for a
time horizon of 5 904 hours and a production target estimated with the final batch size and
the maximum number of batches in Table 3.1. The structure of the plant was optimized to a
minimum cost of U.S.$ 26 000 900 and the equipment sizes shown in Table 3.15. Estimated
final batch size and cycle times for each product are presented in Table 3.16.

Notice that both duplication, in-phase and out-of-phase, were used in the optimized plant
decreasing the large time needed for the fermentation in Product 4 process and permiting
small semi-continuous equipment sizes in general.

A comparison to the real plant was not straightforward in this case given that the
fermentation plant did not produce the 4 proteins in the one year period. Diferent time
horizon, based on production target, were studied and results are shown in Table 3.17.
Maximum capacity refers to the production target computed with the maximum number
of batches that can be produced in the purification plant (in Table 3.1); and the actual
capacity to the actual number of batches produced in the same facility.

Based on real data of cycle times and the aforementioned capacity, fermentation plant
should take about 9 436 hours to produce the 4 products. An optimization of the 26 stages
conforming that plant over that time horizon and the maximum capacity computed from
Table 3.1 gives a cost of U.S.$ 5 378 660, a 26% lower than the calculated based on real sizes.

Finally, real data indicates that the total production of the 4 products given the real used
capacity takes about 15 004 hours. Running the optimization based on that data, the plant
cost reaches U.S.$ 9 899 380 that is almost a third of the cost calculated for the real plant.
This result makes even more evident the benefits of using this type of models for plant design.
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Table 3.15 – Optimized structure of the multiproduct batch plant over a time horizon of 5
904 hours. The cost function is equal to U.S.$ 26 000 900.

Stage X1 X2 V1 V2 V3/R

1 1 3 25714.3 . .
2 1 1 16479.7 . 5
3 1 1 25714.3 2571.43 50
4 1 1 21827.9 . .
5 1 1 21827.9 4365.58 50
6 1 1 4802.14 . 4500
7 1 1 2589.67 . 15
8 1 1 1942.25 . .
9 1 1 2136.47 . 700
10 1 1 23501.2 941.141 50
11 1 1 2828.57 942.857 10
12 1 1 2828.57 . .
13 1 1 2828.57 707.143 10
14 1 1 2121.43 . .
15 1 1 4802.14 600.267 50
16 1 1 1591.07 . .
17 3 1 1591.07 397.768 50
18 1 1 16372.3 . .
19 1 3 24558.4 . .
20 1 1 35799.1 . .
21 2 1 35799.1 . 55
22 1 1 18559.3 2062.15 10
23 1 1 2062.15 1728.79 5
24 1 1 1746.38 1921 1000
25 1 1 1921 . 55
26 1 1 1556.07 1400.6 400
27 1 1 3954.67 . .
28 7 1 3954.67 593.171 50
29 1 1 1779.51 . .
30 6 1 1779.51 1067.49 1600
31 1 1 2134.99 . .
32 1 1 2134.99 . 5
33 6 1 1859.75 1115.62 15
34 1 1 4462.5 . .
35 7 1 4462.5 495.833 50
36 8 1 1400.6 1260.67 15
37 2 1 960.498 864.457 400
38 1 1 1821.66 . .
39 1 1 1821.66 . 5
40 2 1 1285.85 1157.28 1600
41 1 1 1157.28 1041.56 1000
42 1 1 1260.67 1134.71 400
43 1 1 778.019 700.224 400
44 1 1 1134.71 . 30
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Table 3.16 – Final batch size and cycle time of the 4 products produced in the multiproduct
batch plant optimized over a time horizon of 5 904 hours.

Product Final Batch size (kg) Cycle time (h)

P1 7.916 24
P2 6.410 24
P3 12.831 8.67
P4 28.562 40.67

Table 3.17 – Comparison between the costs of the original and the optimized facilities
considering different production targets and time horizon. Costs are calculated in U.S.$ based
on data for year 2012.

Capacity
Time

horizon
(h)

Optimized
cost

(U.S.$)

Difference
(%)

Multi-product Batch Plant. Actual cost U.S.$ 28 805 109.
Maximum capacity 5 904 26 000 900 10

23 744 12 291 600 57
Actual capacity 5 904 14 826 000 49

15 004 9 899 380 66
Fermentation Plant. Actual cost U.S.$ 7 317 406.

Maximum capacity 5 904 8 629 070 -18
16 333 5 890 440 20

Actual capacity 5 904 6 163 610 16
9 436 5 378 660 26

Purification Plant. Actual cost U.S.$ 21 487 703.
Purification Plant 5 904 14 561 500 32
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3.5 Conclusions

In this article a modification of the model presented in a former article has been presented
in order to apply the model to the design of a multiproduct batch plant that produces 4
recombinant proteins with known processes. The new model includes discrete costs and
equipment sizes for semi-continuous items and preserves the selection of costs and sizes in a
continuous range for stirred tanks, reactors and fermenters.

The application of the model permited cost savings up to 66% of the cost of the main
equipment, showing that this tool is not just useful but necessary in order to design a plant
of the optimal and necessary size.

Lower level implementations (in C, C++) could include the effect of variable cost and
production target parameters but this is beyond the scope of this article and was left for
a future investigation. In addition, as the time required to solve each instance is less than
30 seconds, there is plenty of space for continuing the addition of new and more complex
constraints.
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Chapter 4

Main conclusions

In this work a scalable approach that can be applied for the design of real multi-product
batch plants is presented.

The proposed methodology was proven to be more numerically stable than other
alternative approaches for the same problem giving true optimal solutions, and in general,
faster than other tested approaches. The developed method takes advantage of two facts:
that the continuous relaxation of the feasible region is convex and bounded (which allows to
build, up front, inner or outer approximations of the feasible space, and thus reports true
upper/lower bounds for each instance); and the fact that mixed-integer linear solvers are
much more stable numerically and scalable in size than MINLP algorithms.

The incorporation of performance profiles -borrowed from the optimization community-
allowed an easy comparison between the proposed MILP formulations and their former
MINLP forms.

The linear nature of the proposed formulation permited the modification for the inclusion
of the selection of equipmtent sizes in a discrete set of available sizes. The inclusion of both,
discrete and continuous sizes, allowed for a better modeling for a real case scenario where
tanks and fermenters may be built according to customer needs; and semi-continuous items
such as centrifuges or membrane filtration systems may be found in discrete sets of sizes
given by their manufacturers.

The application of the model to the particular case of a plant that produces 4 proteins
in a downstream process of 43 stages showed that costs of main equipment may be saved up
to a 66%. This shows that this tool is not just useful but necessary to design an optimal
and not oversized plant. For other cases the application of this methodology should be
straightforward.

Lower level implementations (in C, C++) could permit the study of more complex
constraints such as variable costs and production targets, nevertheless this is beyond the
scope of this work. In addition to that, as the model takes at most a few minutes to find
a global optimum, there is plenty of space to complexify the model for example including
operating costs in the objective function.
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ments, which  show  that  we are  able  to  solve  almost  all tested  instances,  and,  in  average,  we  are  ten  times
faster  than  alternative  approaches.  As we  use  a high  level  implementation  language  (AMPL)  we should
get  further  time  improvements  if lower  level  implementations  are  used  (C, C++).

Reproducibility  of  our results  can  be  tested  using  our models  and  data  available  on-line  at  BPLIB.1

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Conventional multi-product batch process literature using an
optimization-based approach model the design and synthesis of
such plants with Mixed-Integer Non-Linear Programming (MINLP)
formulations (Floudas, 1995). The usual objective is to minimize
the investment cost subject to the fulfillment of the production
targets of a given set of products. Major drawbacks are given by the
combinatorial nature of mixed-integer programming and possible
nonconvexities due to non-linearities. In computational optimiza-
tion numerical issues of these formulations given by rounding
errors, numerical instabilities and approximation errors are well-
documented (Goldberg, 1991; Koch, 2004; Margot, 2009; Vielma,
2013).

Since Robinson and Loonkar (1972) different procedures have
been proposed to tackle these problems (Reklaitis, 1990; Rippin,
1993; Barbosa-Póvoa, 2007; Verderame et al., 2010; Nikolopoulou
and Ierapetritou, 2012) but a method that is more efficient for
a particular example is hardly predictable (Ponsich et al., 2007)

∗ Corresponding author. Tel.: +56 229784723; fax: +56 226991084.
E-mail addresses: gsandova@ing.uchile.cl (G. Sandoval), daespino@dii.uchile.cl

(D. Espinoza), nicolasf@uc.cl (N. Figueroa), juasenjo@ing.uchile.cl (J.A. Asenjo).
1 Available at: http://www.dii.uchile.cl/ daespino/

and nowadays the development of effective solution approaches
and algorithms remains very necessary (Grossmann and Guillén-
Gosálbez, 2010).

The logarithmic change of variables proposed by Kocis and
Grossmann (1988) linearizes most of the functions and leads to
a convex MINLP problem, approach used by Ravemark and Rippin
(1998) and Montagna et al. (2000) among others. Another approach
chosen by Pinto et al. (2001) and Ponsich et al. (2007) among others
is the use of specially designed solvers which can usually find good
feasible solutions by the use of heuristic procedures (Grossmann
et al., 2000). In practice the best off the shelf solvers for this kind of
problems are the open source codes BONMIN and SCIP and the com-
mercial solvers BARON and DICOPT that stand out in Mittelmann’s
benchmarks for optimization software (Mittelmann, 2013). Never-
theless none of them guarantee convergence to a global optimum,
converging in some instances to local optima or not converging
altogether. For the particular case of BARON and DICOPT perfor-
mance failures are reported for non-convex models (Ponsich et al.,
2007; Rebennack et al., 2011; Li et al., 2012); nevertheless even
in cases where theoretically the algorithms work, we  found that
in practice, they do not converge to the global optimum. We  have
run precise experiments that demonstrate these failures in convex
MINLP formulations (see Section 2).

It is a fact that there is a huge gap between Mixed-Integer Linear
Programming (MILP or MIP) and MINLP solvers technology (Nowak,

http://dx.doi.org/10.1016/j.compchemeng.2015.08.001
0098-1354/© 2015 Elsevier Ltd. All rights reserved.
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Nomenclature

Indices
h host
i product
j stage
m number of duplicated units
UP,LO upper and lower bounds

Sets
E1 set of batch stages, ⊂ E
E2 set of semi-continuous stages, ⊂ E
E3 set of chromatographic stages, ⊂ E
E set of all stages
H set of hosts
I set of products
M set of available units operating in parallel in-phase

or out-of-phase
R set of routes: stages j needed to process the product

i synthesized by host h
U set of available hosts h for product i synthesis

Parameters
ı time horizon
cn

j
, �n

j
cost coefficients related to Yn

j
with n ∈ {1, 2, 3}

di production target for product i
Sn

ij
, Sn

ij
size factor for product i in stage j related to Yn

j
. sn

ij
=

ln(Sn
ij
)n ∈ {1, 2, 3}

T0
ij

, T0
ij

time factor for product i in the batch or chromato-

graphic stage j. t0
ij

= ln(T0
ij

)

T1
ij

, t1
ij

time factor for product i in the semi-continuous or

chromatographic stage j. t1
ij

= ln(T1
ij

)

Variables
v slack variable
Xn

j
, Xn

j
number of units operating in parallel in-phase (X1

j
)

and out-of-phase (X2
j

) in stage j. xn
j

= ln(Xn
j

)

Y1
j

, y1
j

volumetric capacity for batch units and retentate or
feed tank for semi-continuous or chromatographic
stages. y1

j
= ln(Y1

j
)

Y2
j

, Y2
j

volumetric capacity for permeate of product tanks
for semi-continuous or chromatographic stages.
y2

j
= ln(Y2

j
)

Y3
j

, Y3
j

capacity of semi-continuous items. y3
j

= ln(Y3
j

)

Y4
i

, Y4
i

batch size for final product i. y4
i

= ln(Y4
i

)
Y5

i
, Y5

i
cycle time for product i. y5

i
= ln(Y5

i
)

z1
ih

binary variable: 1 if protein i is synthesized by host
h; 0 otherwise

z2
j

binary variable: 1 if stage j is used to process at least
one of the products

z3
jm

binary variable: 1 if m units are operating in parallel
in-phase in stage j; 0 otherwise

z4
jm

binary variable: 1 if m units are operating in parallel
out-of-phase in stage j; 0 otherwise

2005). Nowadays mixed-integer linear techniques are fast, robust
and able to provide solutions to problems with up to millions of
variables (Geißler et al., 2012). Taking advantage of this Voudouris
and Grossmann (1992) used reformulation schemes to develop
MILP models for the preliminary design of multi-product batch

plants, introducing binary variables for the selection of discrete
available equipment sizes. From this point, to the design deci-
sions other were included as synthesis, production planning and
scheduling (Voudouris and Grossmann, 1993); design and planning
in a multiperiod scenario (Moreno and Montagna, 2007); design
of multi-product batch plants considering duplication of units in
series (Moreno et al., 2009) and the design and planning of multi-
product batch plants using mixed-product campaigns (Corsano
et al., 2009). Most recently these MILP formulations have been
used to account for the design and scheduling of this type of plants
(Fumero et al., 2011, 2012a,b) and for the design under uncertainty
considering different types of decisions (Durand et al., 2012, 2014;
Moreno and Montagna, 2012; Moreno-Benito et al., 2014).

A key feature in these design problems is the use of Big-M
constraints to account for selection decisions despite being prob-
lematic (Bosch and Trick, 2005). Some authors that have included
this type of constraints in their formulations are Gupta and Karimi
(2003), Corsano et al. (2009), Moreno et al. (2009), Moreno and
Montagna (2012). Obviously, these authors have found that the
value of the Big-M parameters has a tremendous impact on the
solution time; see for example Moreno et al. (2007). In addition it
has been proven experimentally that other methods, as the convex
hull formulation presented by Montagna et al. (2004) are better to
account for selection decisions.

In this paper we develop a robust methodology to solve the
design problem of a biotechnological multi-product batch plant
in situations where equipment can be manufactured according
to customer needs, as fermentors or tanks in general. To do that,
we develop a MILP formulation which does not rely on the use
of Big-M constraints and does not use a discrete range of equip-
ment sizes. To do that we use four basic techniques (see Fig. 1):
First, an extension of the non-linear (but convex) formulation pro-
posed by Kocis and Grossmann (1988) is applied. Secondly, to deal
with non-linear convex inequalities a priori we  constructed linear
outer (or inner) approximations of them which allow us to compute
(a posteriori) true feasible solutions and lower (or upper) bounds.

Fig. 1. Basic techniques used to model synthesis and design decisions considering
continuous equipment sizes and discrete host selection.
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Thirdly, to deal with integer variables, we used advanced reformu-
lation techniques coming from the mixed-integer-programming
literature (clique constraints). Finally, once the initial problem is
transformed into a standard mixed-integer programming problem,
it is possible to take advantage of mature commercial MIP  solvers.

This approach, at least in our experiments, is more stable numer-
ically, scalable, and faster to solve than current alternatives and can
deal with the more general problem of jointly selecting equipment
sizes and alternative production paths for multiple products. Using
our approach, it is possible to quickly and accurately compute solu-
tions at any desired precision level. In our extensive computational
experiments (see Fig. 11) we found that current non-linear solvers
only solved 43% of the instances generated for this study, while our
approach was able to solve over 95% of the studied instances in a
running time that, on average, was more than ten times faster than
MINLP solvers in equivalent and standard MINLP formulations. To
make these comparisons we introduce the performance profiles; a
methodology borrowed from the optimization literature.

The rest of this paper is organized as follows. In Section 2 typ-
ical drawbacks found by a commonly used MINLP solver and the
standard MINLP formulation is presented. In Section 3 classic and
novel formulations for the design problem are described. Relevant
information about the methodology used to benchmark different
formulations and to avoid numerical instabilities is given in Section
4 and computational results are presented and discussed in Section
5. Finally, the conclusions are presented in Section 6.

2. Current limitations

Our main objective is finding a robust and scalable methodol-
ogy for the design of biotechnological multi-product batch plant
considering equipment sizing (design decisions) and selecting the
downstream processing stages (synthesis decisions). Given the
complexities that to date have been added to the original design
problem we decided to go back to the problem studied by Iribarren
et al. (2004) where only design and synthesis decisions are mod-
eled. In their paper they designed a biotechnological batch plant for
the production of four recombinant proteins, i, where each can be
synthesized by two different hosts, h, having four microorganisms
in total. In addition to that three of the fifteen processing stages,
j, may  be performed by two different unit operations, d. In their
formulation they used constant size (Sijdh) and time (Tijdh) factors
to model each stage; considered duplication of units in parallel in-
phase, Gjd, and out-of-phase, Mjd, in order to diminish either the
equipment sizes Vj or cycle times TLi, respectively, and used Big-M
constraints to account for the selection of hosts and equipment.

As a correctness test, we took the example presented in Iribarren
et al. (2004) and splitted into 16 different instances that only allow
equipment selection. Then we tested two different yet equivalent
formulations based on their model but removing host selection2.

In the first (C1) the selection of hosts was eliminated by limiting
the set of available hosts, Hi, to just one per protein, and in the
second (C2), by setting the values of the selection binary variables to
1 for the selected hosts and 0 for those non-selected. If the solution
is being found by the solvers, we should observe two things:

(a) both model formulations (C1) and (C2) give the same solution,
and

(b) the minimum of the separated instances is equivalent to the
global minimum of the problem with host selection.

2 To further isolate the results obtained from problems with non-standard local-
settings, the GAMS modelling language was used and the experiments were run in
the  NEOS server (Gropp and Moré, 1997; Czyzyk et al., 1998; Dolan, 2001) available
in  http://www.neos-server.org.

Table 1
Comparison of the number of constraints and variables of some selected instances
solved using models that account for selection with Big-M constraints – models (C1)
and  (C2) – and a classic formulation for design decisions only, (P1). All instances
were solved using the DICOPT solver.

Variables Constraints Status of solution

Discrete Continuous Linear Non-linear

(C1) 480 185 303 10 Incorrect
(C2) 512 323 682 18 Incorrect
(P1) 360 71 179 9 Correct

Contrary to what we expected differences in the objective function
value for both (C1) and (C2) formulations went from 1% to 78% in
the 16 instances studied (data not shown), and even more striking,
the solver finds a local minimum which is worse than those found
for most instances without host selection.

These numerical instabilities seem to be aggravated with size
since it is known that DICOPT works fine for small instances. Situa-
tion in accordance to the results obtained by Ponsich et al. (2007). In
order to show these differences in sizes we built Table 1 to compare
the number of constraints and variables involved in the smaller
instances of the cases (C1) and (C2), that were incorrectly solved
according to the aforementioned results, with the size of a smaller
instance that was  correctly solved by a classic formulation (P1)
that solves an equipment sizing problem similar to that presented
by Iribarren et al. (2004), but with no selection of hosts or equip-
ments, and using DICOPT solver. This last formulation is presented
en Section 3.1.1.

3. Problem formulation

Two  major contributions are presented in this section. First,
clique constraints are introduced to formulate the discrete part of
the model allowing the selection of the production path without
the use of Big-M constraints, in models (P2) and (P4). Second, a new
approach, in Section 3.2, to handle non-linearities using standard
reformulation techniques from the optimization field that permits
the use of linear solvers leading to more reliable results and faster
computing time. The relation among the four different models stud-
ied is shown in Fig. 2.

3.1. MINLP formulation

3.1.1. The equipment-sizing problem (P1)
In this section we present the most basic formulation for the

design of biotechnological multi-product batch plants as only
equipment sizing and duplication of units in parallel are considered.

The plant consists of a sequence of batch, semi-continuous and
chromatographic stages used to manufacture different products i;

Fig. 2. Formulations compared in this article. Model (P1) is the most basic formu-
lation that only includes design decisions. Model (P2) includes the selection of the
downstream processes without the use of Big-M constraints. Models (P3) and (P4)
are the transformed models of (P1) and (P2), respectively, using our proposed inner
and  outer approximations.
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where semi-continuous as well as chromatographic stages are com-
posed by the semi-continuous items plus feed and product tanks.
At each stage j there are X2

j
groups of units operating in parallel

out-of-phase and each group is conformed by X1
j

units operating
in-phase. For semi-continuous or chromatographic stages feed and
product tanks can only be duplicated out-of-phase. Single produc-
tion campaigns are considered and batches are transferred from
one stage to the next without delay (zero wait policy).

The objective is to minimize the investment costs of main equip-
ments of the plant (see Eq. (1)) given fixed production targets, di,
over a time horizon ı.

min  cost =
∑

j∈E1

X1
j X2

j

(
c1

j Y1
j

�1
j

)
+

∑

j∈E2∪E3

[
X2

j

(
c1

j Y1
j

�1
j

)

+ X2
j

(
c2

j Y2
j

�2
j

)
+ X1

j X2
j

(
c3

j Y3
j

�3
j

)]
+ v�ı (1)

Variables Y ·
j

represent the different equipment sizes. Param-
eters c ·

j
and � ·

j
are cost coefficients distinctive for each kind of

equipment and v is a slack variable included to assure feasibility
(Montagna et al., 2004).

Making the change of variables introduced by Kocis and
Grossmann (1988) we get the new objective function (2).

min  cost =
∑

j∈E1

c1
j exp

(
x1

j + x2
j + y1

j �1
j

)

+
∑

j∈E2∪E3

[
c1

j exp
(

x2
j + y1

j �1
j

)
+ c2

j exp
(

x2
j + y2

j �2
j

)

+ c3
j exp

(
x1

j + x2
j + y3

j �3
j

)]
+ v�ı (2)

At each stage and for each product the size of the units must
allow the processing of the incoming batch which can be splitted
among X1

j
units to not surpass the upper bound capacity of the

equipment. In batch stages this constraint can be written as Eq.
(3a); convexified in Eq. (3b).

Y1
j ≥

S1
ij
Y4

i

X1
j

∀i ∈ I, j ∈ E1 (3a)

y1
j + x1

j ≥ s1
ij + y4

i ∀i ∈ I, j ∈ E1 (3b)

As in semi-continuous or chromatographic stages duplication is
allowed just for semi-continuous items, feed and product tanks are
sized using constraints (4) and (5).

y1
j ≥ s1

ij + y4
i ∀i ∈ I, j ∈ E2 ∪ E3 (4)

y2
j ≥ s2

ij + y4
i ∀i ∈ I, j ∈ E2 ∪ E3 (5)

Chromatographic columns have to process the incoming batch
and both duplication in-phase and out-of-phase are allowed. Dupli-
cation in-phase is modeled in size constraint (6) since this permits
smaller units and duplication out-of-phase is reflected in time con-
straints.

y3
j + x1

j ≥ s3
ij + y4

i ∀i ∈ I, j ∈ E3 (6)

The cycle time for each product i, Y5
i

, is defined as the time
elapsed between the production of two consecutive batches and
is given by the larger operating time, Tij, among the stages in the

process. This time can be decreased if a duplication of units out-of-
phase is used:

Y5
i ≥ Tij

X2
j

∀i ∈ I, j ∈ E (7)

As batch stages operate for a fixed time, T0
ij

, cycle time constraint
in its convex form is given by Eq. (8):

y5
i + x2

j ≥ t0
ij ∀i ∈ I, j ∈ E1 (8)

Semi-continuous stages, on the other hand, operate during a
time that depends on the final batch size, Y4

i
. For those stages the

cycle time is constrained as in Eq. (9).

Y5
i ≥

T1
ij

Y4
i

X1
j

Y3
j

X2
j

∀i ∈ I, j ∈ E2 (9a)

y5
i + x2

j ≥ t1
ij + y4

i − x1
j − y3

j ∀i ∈ I, j ∈ E2 (9b)

Lastly, chromatographic stages are modeled considering both
fixed and variable operation times leading to the highly non-linear
constraint (10).

Y5
i ≥

T0
ij

+ T1
ij

Y4
i

X1
j

Y3
j

X2
j

∀i ∈ I, j ∈ E3 (10a)

y5
i + x2

j ≥ ln
[
exp

(
t0
ij

)
+ exp

(
t1
ij + y4

i − x1
j − y3

j

)] ∀i ∈ I, j ∈ E3(10b)

Production targets for all products, di, must be satisfied within
the time horizon ı.
∑

i∈I

diY
5
i

Y4
i

≤ ı + vı (11a)

∑

i∈I

di

ı
exp

(
y5

i − y4
i

)
≤ 1 + v (11b)

Finally, variables for duplication in-phase X1
j

are restricted to

integer values using constraints (12) and (13), where z3
jm

are binary
variables and M a set of available units to operate in parallel in-
phase. The same is valid for variables for duplication out-of-phase,
X2

j
.

x1
j =

∑

m∈M
z3

jm ln(m) ∀j ∈ E (12)

∑

m∈M
z3

jm = 1 ∀j ∈ E (13)

Appropriate upper and lower bounds are also considered for all
of the variables.

3.1.2. The design problem with selection of routes and equipment
sizing (P2)

More recent models (like Iribarren et al. (2004)) take into
account the joint selection of the production processes including
selection of hosts and equipment. Their formulation uses classical
Big-M constraints. Since we know that these constraints are prob-
lematic (Bosch and Trick, 2005) in this work we  propose a different
way to formulate the integer part of the problem replacing the Big-
M by clique constraints. With this formulation all constraints are
ignored except the upper bound on the variables (Dietrich et al.,
1993). Model (P2) includes the sizing of the equipment, the dupli-
cation of units in parallel working in-phase and out-of-phase and
accounts for the selection of the global process selecting routes
which are defined as the series of unit operations used to purify
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a protein given a certain host that synthesizes it. In this way once
the pair product-host, (i, h), is selected the set of stages conforming
the process is fixed.

The objective function becomes:

min  cost =
∑

j∈E1

z2
j c1

j exp
(

x1
j + x2

j + y1
j �1

j

)

+
∑

j∈E2∪E3

z2
j

[
c1

j exp
(

x2
j + y1

j �1
j

)
+ c2

j exp
(

x2
j + y2

j �2
j

)

+c3
j exp

(
x1

j + x2
j + y3

j �3
j

)]
+ v�ı (14)

Since some stages can be unused and just one route per protein
can be selected we introduced two binary variables: z1

ih
and z2

j
. z1

ih

is equal to 1 when for product i synthesis host h is selected and 0
otherwise and z2

j
is 1 when stage j is used to process at least one

of the products and 0 otherwise. Constraint (15) enforces to chose
just one host h to produce the protein i and constraint (16) permits
stage j to be used just in case at least one product needs it to be
processed.
∑

(i,h)∈:U

z1
ih = 1 (15)

z2
j ≥ z1

ih ∀(i, h, j) ∈ R|(i, h) ∈ U (16)

For chromatographic stages constraints take the form of Eqs.
(17)–(20) that are trivially satisfied if host h is not selected to pro-
duced protein i (z1

ih
= 0). When the host h is selected for protein i

(z1
ih

= 1) and the stage j has to be performed to process product i
then z2

j
= 1 and constraints are the same as in previous formulation

(Section 3.1.1).

y1
j z2

j ≥ s1
ihjz

1
ih + y4

ihz1
ih ∀(i, h, j) ∈ R, j ∈ E3 (17)

y2
j z2

j ≥ s2
ihjz

1
ih + y4

ihz1
ih ∀(i, h, j) ∈ R, j ∈ E3 (18)

y3
j z2

j + x1
j z2

j ≥ s3
ihjz

1
ih + y4

ihz1
ih ∀(i, h, j) ∈ R, j ∈ E3 (19)

y5
ihz1

ih + x2
j z2

j ≥ ln
[
exp

(
t0
ihj

)
+ exp

(
t1
ihj + y4

ih − x1
j − y3

j

)]
z1

ih

∀(i, h, j) ∈ R, j ∈ E3 (20)

If stage j is not necessary for the process (z2
j

= 0); then equip-
ment sizes are set to 0 with constraints as (21) and no unit is
considered to conform that stage (constraint (22)):

y1,LO
j

z2
j ≤ y1

j ≤ y1,UP
j

z2
j ∀j ∈ E (21)

∑

m∈M
z3

jm = z2
j ∀j ∈ E (22)

Finally, in the planning horizon constraint (23) only the terms
associated to the selected host per protein are considered.
∑

(i,h)∈:U

dih

ı
z1

ih exp
(

y5
ih − y4

ih

)
≤ 1 + v (23)

3.2. Mixed-integer linear formulations

To obtain more accurate solutions and, specially in larger
instances, in a reasonable running time we present a MILP refor-
mulation, which can be solved using any commercial MILP solver.
These models are basically equal to their MINLP counterpart but
replacing the non-linear objective and time constraints with sets of

linear functions which give arbitrarily good lower or upper approx-
imations of their respective original functions. The actual optimal
solution is in between both approximations and the precision level
is given by the number of cutting points selected to generate the
set of linear functions to replace each non-linear function and the
actual selection of the approximation points used for example equi-
spaced or non-equispaced. In this way the accuracy of the solution
can be as high as desired at the cost of longer computing time.

3.2.1. Inner and outer approximations
Given a convex function of one variable g(x) ≤ 0 and a set of

points {xk}k=1,...,n in the domain of g then, is easy to see that:
{

x|g(x̂k) + ∇g(x̂k)(x − x̂k) ≤ 0 k = 1, . . .,  n
}

⊇
{

x|g(x) ≤ 0
}

(24)
and

{
x|g(x̂k) +

g
(

x̂k+1

)
− g

(
x̂k

)

x̂k+1 − x̂k

(
x − x̂k

)
≤ 0 k = 1, ldots, n

}

⊆ {x|g(x) ≤ 0}, (25)

which allows for straightforward lower and upper approximations
of g. Using this fact, it is easy to find inner and outer approximations
of the problems (P1) and (P2).

In fact, for each non-linear constraints of the form gj(x) ≤ 0,
and considering an arbitrary set of cutting points in the domain
{xk}k=1,...,n the consideration of the set of constraints

gj(x̂k) + ∇gj(x̂k)
(

x − x̂k

)
≤ 0 k = 1, . . .,  n (26)

which leads to a larger feasible set, as can be seen in Fig. 3a. On the
other hand, we consider the set of constraints

gj(x̂k) +
gj

(
x̂k+1

)
− gj

(
x̂k

)

x̂k+1 − x̂k

(
x − x̂k

)
≤ 0 k = 1, . . .,  n − 1 (27)

which leads to a smaller feasible set, as can be seen in Fig. 3b.
In the same way, the minimization of the cost objective function,

f(x), can be replaced by

min  v
s.t. v ≥ f (x̂k) + ∇f (x̂k)(x − x̂k) k = 1, . . .,  n

(28)

which leads, together with an outer approximation of constraints,
to a lower bound of the true cost. The objective function can also
be replaced by

min  v

s.t. v ≥ f (x̂k) +
f
(

x̂k+1

)
− f

(
x̂k

)

x̂k+1 − x̂k
(x − x̂k)

k = 1, . . .,  n

(29)

which leads, together with an inner approximation of constraints,
to an upper bound of the true cost.

In what follows, ∇f (x̂k) or
f (x̂k+1)−f (x̂k)

x̂k+1−x̂k
= ˛k in the lower or upper

approximation, respectively, x̂k = bk and f (x̂k) = ˇk.

3.2.2. Reformulation for the equipment-sizing problem (P3)
The assumptions for this model are the same as those for the

MINLP proposed in Section 3.1.2.
Objective function. Cost functions of Eq. (2) are individually lin-

earized using the approximations given in Section 3.2.1 which
leads to Eq. (30):

min  cost =
∑

j∈E1

v1
j +

∑

j∈E2∪E3

[
v1

j + v2
j + v3

j

]
(30)
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Fig. 3. Feasible region (patterned area) of (a) outer and (b) inner approximations
(dashed lines) of an exponential function (solid line). Points bi are the cutting points
and  LB and UB are the lower and upper bounds of x.

Constraints.  Batch and semi-continuous stages and binary vari-
ables for duplication of units constraints in this MILP model are the
same as those in the MINLP model shown in Section 3.1.1.

Chromatographic stages.  Size constraints for feed and product
tanks and column size constraint are the same as those in the MINLP
model shown in Section 3.1.1.

Time constraint (31) is obtained from the linearization of Eq.
(10):

y5
i + x2

j ≥ ˛6ij
k

(
y4

i − x1
j − y3

j − b6ij
k

)
+ ˇ6ij

k
∀i ∈ I, j ∈ E3, k ∈ K6

(31)

Planning horizon. From linearization of Eq. (11) constraint (32)
is obtained:∑

i∈I
v7

i ≤ 1 (32)

Auxiliary variables.  Cost functions in the objective function are
linearized as shown in Eq. (33) and planning horizon constraint is
linearized as shown in Eq. (34):

v1
j ≥ ˛1j

k

(
x1

j + x2
j + �1

j y1
j − b1j

k

)
+ ˇ1j

k
∀j ∈ E1, k ∈ K1 (33)

v7
i ≥ di

ı
˛7i

k

(
y5

i − y4
i − b7i

k

)
+ di

ı
ˇ7i

k ∀i ∈ I, k ∈ K7 (34)

3.2.3. Reformulation for the design problem considering route
selection and equipment sizing (P4)

Similar to the model presented in Section 3.2.2 this model
was built based on its MINLP counterpart and most of constraints
remain the same.

The objective function is the same as that from model (P3) and
for stages design only differences are encountered for time con-
straints of chromatographic stages. In this way, applying the inner
or outer approximations to Eq. (20) constraint (35) is obtained:

y5
ih + x2

j ≥ ˛6ihj
k

(
y4

ih − x1
j − y3

j

)
+
(

ˇ6ihj
k

− ˛6ihj
k

b6ihj
k

)
z1

ih

∀(i, h, j) ∈ R, j ∈ E3, k ∈ K6 (35)

This set of equations together with constraints of the type of (36)
for variables y1

j
, Y2

j
, y4

ih
, y5

ih
, X1

j
and X2

j
will model the same situation

as in (P2).

y3,LO
j

z2
j ≤ y3

j ≤ y3,UP
j

z2
j ∀j ∈ E3 (36)

If z2
j

= 0 constraint (35) is trivially satisfied. On the other hand

if z1
ih

= 0 constraint (35) becomes:

x2
j ≥ ˛6ihj

k

(
−x1

j − y3
j

) ∀(i, h, j) ∈ R, j ∈ E3, k ∈ K6 (37)

Since ˛6ihj
k

is a positive parameter constraint (37) will be always
satisfied only if |x1

j
| > |y3

j
| or if both variables are bigger than or

equal to 0. To assure this data preprocessing is necessary. As X1
j

is

always bigger than 0 we normalized variables Y3
j

by their lower
bound. More details in Section 4.3.3.

For the case of planning horizon constraint little difference is
found between (32) and (38). The last one takes into account host
selection:∑

(i,h)∈:U

v7
ih ≤ 1 (38)

Finally, constraints for auxiliary variables v1
j
, v2

j
, v3

j
and v7

ih
are

different from those for problem (P3) to account for route selection:

v1
j ≥ ˛1j

k

(
x1

j + x2
j + �1

j y1
j

)
+
(

ˇ1j
k

− ˛1j
k

b1j
k

)
z2

j ∀j ∈ E1, k ∈ K1 (39)

v1
j ≤ z2

j v1,UP
j

∀j ∈ E1 (40)

v7
ih ≥ di

ı
˛7ih

k

(
y5

ih − y4
ih

)
+ di

ı

(
ˇ7ih

k − ˛7ih
k b7ih

k

)
z1

ih ∀(i, h) ∈ U,  k ∈ K7

(41)

v7
ih ≤ z1

ihv7,UP
ih

∀(i, h) ∈ U (42)

If z2
j

= 0 constraints (39)–(42) are trivially satisfied and if z1
ih

= 0

then constraints (41) and (42) are trivially satisfied. Finally, if z1
ih

= 1
and z2

j
= 1 then constraints (39)–(42) are the same as those in the

MILP formulation without route selection.

4. Methods

4.1. Solvers and modelling language

For MINLP problems the open source BONMIN 1.5 and SCIP 3.0.1
solvers were studied. In our computational tests SCIP uses SoPlex
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1.7.1 as the LP solver and BONMIN (with its default algorithm, B-
Hyb) uses Cbc 2.7.1 as the MIP  solver and Ipopt 3.10.0 with MUMPS
as linear solver. For the case of BONMIN we tested 3 over 5 available
algorithms: B-Hyb the default algorithm, B-Ecp a specific parame-
ter setting of B-Hyb that can be faster in some cases (Bonami and
Lee, 2013) and B-OA using CPLEX as the MILP solver that according
to Mittelmann (2013) can be faster for convex instances. In prelim-
inary studies solvers as KNITRO and COUENNE were also tested to
solve our MINLP formulations, but their performance in our sim-
plest instances were poorer than that for the selected solvers.

For MILP problems the commercial CPLEX solver in its version
12.4.0.0 was used as it is one of the top performer from the literature
(Mittelmann, 2013).

All models were coded using the AMPL modelling language.

4.2. Execution environment

Each instance was executed using a single thread on a Intel(R)
Xeon(R) CPU E5620@2.40GHz with a running time limit of 48 hours,
an optimality relative gap of 0.1% for models (P3) and (P4) and 2%
for (P1) and (P2), and a maximum memory usage of 6Gb of RAM.

The difference in the prescribed optimality gap for MILP and
MINLP solvers is given by the fact that while MINLP problems are
solved to find the actual minimum cost function within a defined
optimality gap, and therefore an a priori optimality gap, MILP mod-
els find true upper and lower bounds for the actual cost function
leading to an a posteriori optimality gap that is computed after-
wards. As will be shown in Section 5.2, this difference ensure that
our results are comparable.

4.3. Methodology

4.3.1. Instances
To compare different approaches two set of instances, with ran-

domly generated data between given reasonable upper and lower
bounds, were built: “sizing instances”, to compare simpler models
(P1) and (P3), and “routing instances” to compare more complex
models (P2) and (P4). We  considered a variety of different num-
ber of proteins to be produced (4–6), number of stages to conform
the process (11–65), number of routes to synthesize the product
(20–65) and different cost coefficients values (1–110% of nominal
values).

4.3.2. Benchmarking
In order to compare the model-solver pairs studied in this work

we introduce a new tool for process engineers that was introduced
in the optimization field by Dolan and Moré (2002) to compare
different optimization software: the performance profile.

As stated by Dolan and Moré (2002) the performance profile for
a solver is the “cumulative distribution for a performance metric”,
for example computing time. In this way things like how many
instances a solver is able to solve given some stop criteria like those
shown in Section 4.2, or how fast it solves different instances of the
same type of problem can be seen graphically.

As an example of how to read these plots, in Fig. 4a it can be
seen that when using 17 cutting points 40% of the instances were
solved to an a posteriori optimality gap up to 2% while when using
33 cutting points leads to an optimality gap under 0.5% for the same
amount of instances.

4.3.3. Data pre-processing
It is known that zero-one problems of large-scale are hard com-

binatorial optimization problems (Crowder et al., 1983; Koch, 2004;
Applegate et al., 2007) reason why in order to obtain reliable solu-
tions preprocessing data is necessary. The use of tight bounds and

Fig. 4. Comparison of performance profiles of (a) relative optimality gap obtained a
posteriori and (b) the logarithm of the running time of “sizing instances” solved
with linear model (P3) using 17, 33 and 65 cutting points for lower and upper
approximations with an optimality relative gap of 0.1%.

the normalization of the variables are necessary to decrease numer-
ical errors.

Although not all of our instances are big enough to need data
preprocessing all were subjected to the same treatment:

• All variable bounds and parameters associated to variables Y ·
j

and
Y ·

i
were normalized by their respective lower bounds.

• Size and time factors were normalized and dimensionless consid-
ering the respective associated units. For example, as size factor
for tanks have units of batch size divided by a volume this param-
eters are dimensionless by multiplying by the lower bound of the
final batch size and dividing by the respective tank lower bound.

• Lower bounds for the cycle time were tightened using time con-
straints and upper bounds for final batch product were tightened
using size constraints.

5. Results and discussion

In this section we show the robustness of our proposed MILP
transformations and its superiority over classic MINLP formulations
with Big-M constraints using performance profiles, a methodol-
ogy borrowed from the optimization literature. Our approach is
not only able to find correct solutions in realistic situations unlike
MINLP formulations but also in a small fraction of the time required
by those approaches. Major implications of these features are the
exactness of the solutions that make this information reliable for
decision-making; and as time reduction is significant numerous
alternatives can be tested with the same formulation or with com-
plexified models that may  address the combination of different
types of decisions.

This presentation is organized as follows: first, we  describe the
instances generated for comparison then discuss the selection of
the cutting points for the proposed approach and finally, we com-
pare MINLP and MILP formulations in terms of their performance
solving the sets of instances using time as the metric.

5.1. Size of instances

To compare the most basic and easy to solve problems (P1) and
(P3) a set of 186 instances (“sizing instances”) were generated vary-
ing the number of proteins to be produced (2–6), the number of
stages that conform each process (11–35) and the cost coefficient
values (1–110% of nominal values). Sizes of these instances in terms
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Table  2
Sizes of sample instances solved using non-linear model (P1).

Variables Constraints

Discrete Continuous Linear Non-linear

Small 264 57 139 9
Medium1 840 157 407 5

Table 3
Sizes of sample instances solved using linear model (P3) with 33 cutting points for
linear inner approximation.

Variables Constraints

Discrete Continuous Linear Non-linear

Small 264 87 1357 –
Medium1 840 237 3096 –

of number of variables and constraints are shown in Tables 2 and
3, where “Small” corresponds to an example of one of the smaller
instances solved with different models and “Medium1”, to an exam-
ple of the bigger instances solved for these two models. As it can
be seen in both tables new auxiliary variables and the sets of linear
functions generated to replace non-linear restrictions makes the
problem from 7 to 12 times bigger in terms of linear constraints
when 33 cutting points are used for linearization with an increase
in about 50% of continuous variables. However, as we will see later,
this increase in variables and constraints leads to smaller execution
times and more accurate results.

To test models (P2) and (P4), as they were posed to solve more
complex scenarios, a set of 249 new and bigger instances (“rout-
ing instances”) were generated varying the number of proteins to
be produced (4–6), the number of stages conforming the global
process (18–65) and the number of routes available to produce
the proteins (20–40). Sizes of these instances in terms of number
of variables and constraints are shown in Tables 4 and 5, where
“Medium2” corresponds to an example of one of the smaller “rout-
ing instances” solved with models (P2) and (P4) and “Large”, to an
example of the bigger instances solved in this work. As it can be
seen in both tables, in comparison with Tables 2 and 3, the number
of discrete variables increases by 5% with the addition of selection
variables, z, and the number of linear constraints increases by 15%
for (P4) and is around double for (P2). As we will see later, this
addition permits the resolution of more complex scenarios, while
at the same time not affecting execution time or optimality gap in
comparison with the more basic formulation.

Table 4
Sizes of sample instances solved using non-linear model (P2).

Variables Constraints

Discrete Continuous Linear Non-linear

Small 279 57 251 9
Medium1 881 157 719 5
Medium2 488 152 1262 22
Large 1794 613 15766 462

Table 5
Sizes of sample instances solved using linear model (P4) with 33 cutting points for
linear inner approximation.

Variables Constraints

Discrete Continuous Linear Non-linear

Small 279 87 1539 –
Medium1 881 237 3602 –
Medium2 488 229 4829 –
Large 1794 926 46489 –

5.2. Selection of cutting points

Contrary to MINLP problems (P1) and (P2) that are solved to
an a priori optimality gap, models (P3) and (P4) give true upper
and lower bounds for the actual cost function of each instance and
therefore an optimality gap that is computed a posteriori. Fig. 4a
shows the performance profiles of the gaps obtained a posteriori
for the “sizing instances” solved with 17, 33 and 65 cutting points
that generate 16, 32 and 64 linear functions for the inner approx-
imations, respectively. Here we  can see that our linear model is
able to solve all instances with a maximum gap of 5% in less than
16 seconds when using 17 cutting points, and a gap of less than
0.5% in less than 64 seconds when using 65 cutting points. The run-
ning time profiles can be seen in Fig. 4b. If 65 cutting points had
been selected, the optimality gap for non-linear solvers would have
been around 0.5% as that is the worst gap obtained a posteriori with
CPLEX (Fig. 4a). Given this, in our final experiments we use a set of
33 cutting points, since this option gives the largest improvement
in gap versus the increase in execution time, and a slightly bigger
optimality gap criteria of 2% was  selected for non-linear solvers.

Once the number of points is selected, the specific values of
these points must be chosen. The most obvious choice is equispaced
points which, for the (relevant) exponential function ex generates
small errors for low values of x and large errors for high values.
Another alternative is to use the expression (43), where N is the
total number of cutting points including −∞ as x1 and x̄ as the upper
bound of x. This is a good approximation in order to minimize the
maximum value of the error (see Fig. 5).

xk = 2 ln
(

k − 1
N − 1

)
+ x̄ ∀k ∈ 2...N (43)

We can see in Fig. 5 that the choice of equispaced points leads to
better approximations for low values of x, but much worse for high
values. For our numerical experiments, equispaced points work
better: while execution time remains the same for both approaches,
a posteriori gaps were slightly worse for non-equispaced points
(Fig. 6).

This leaves open important questions about the optimal point
selection to improve the precision of upper and lower approxi-
mations. Our preliminary simulations seem to indicate that giving
substantial attention to smaller values of x could significantly
improve the results, but this is left for further research.

Fig. 5. Comparison of absolute errors using 2 different sets of 33 cutting points
where f(x) are the linear functions used to approximate the exponential function
between 2 cutting points.
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Fig. 6. Comparison of performance profiles of a posteriori gaps obtained using 33
cutting points to solve model (P4) where f(x) are the linear functions used to approx-
imate the exponential function between 2 cutting points. Time limit was  set in
12  h.

5.3. Equipment sizing: comparison of problems (P1) and (P3)

We  tested three different combinations of solvers-models: the
linear model (P3) was solved using CPLEX as solver while the
non-linear model, (P1), was solved using SCIP and 3 of the 5 algo-
rithms that are available for using BONMIN which were chosen
based on BONMIN users’ manual and Mittelmann’s benchmarking
(Mittelmann, 2013) information. All of the instances were solved
using the stopping criteria and conditions mentioned in Section
4.2.

Fig. 7 shows the performance profile of running time using
BONMIN-Hyb, BONMIN-Ecp, BONMIN-OAcpx, SCIP and our CPLEX-
based approach. From this, we can see that problem (P1) was solved
faster using any BONMIN algorithm than using SCIP solver. More-
over, SCIP only worked well in about the 75% of the instances, while
BONMIN is able to solve the 85% of the instances using the OA
algorithm and the 100% of the studied instances using either the
Ecp or the Hyb algorithm. On the other hand, model (P3) solved
using CPLEX is able to solve all of the instances studied, as well as
BONMIN, but taking much less time than the problem (P1). As B-Ecp
and B-Hyb seems to be equally good for those instances that take
longer to be solved we decided to use as the performance metric
the ratio of the computing time of the model-solver versus the best
time of all of the model-solvers, denoted by �. Those performance
profiles are plotted in Fig. 8 where we can see even more clear than

Fig. 7. Comparison of performance profiles of the logarithm of running time of “siz-
ing  instances” solved using models (P1) and (P3) with an optimality relative gap of
0.1% for the linear solver and 2% for non-linear solvers.

Fig. 8. Comparison of performance profiles of the logarithm of the ratio of the com-
puting time of the pair model-solver versus the best time of the pairs model-solvers
for  “sizing instances” solved with models (P1) and (P3) with an optimality relative
gap of 0.1% for the linear solver and 2% for non-linear solvers.

the CPLEX-based approach is always better than all of the other
options and that Ecp algorithm is always better than Hyb for this
asked optimality gap.

5.4. Routes selection: comparison of problems (P2) and (P4)

As a test of correctness, models (P2) and (P4) were solved using
the generated “sizing instances” where just one route was avail-
able to produce each product. Contrasting these results to those
obtained by (P1) and (P3) it can be seen in Fig. 9 that both formula-
tions, for equipment sizing and considering routes, are consistent
solving the same amount of instances in virtually the same amount
of time. Performance profiles of the relative difference between the
value of the objective function obtained with simpler – (P1) and (P2)
– and more complex formulations – (P3) and (P4) – are presented
in Fig. 10 where it can be seen that the differences between MILP
formulations, as well as for MINLP formulations solved using BON-
MIN, are at most the optimality gap asked for each solver. The
case of SCIP is different because in almost the 10% of the instances
the solver gives results with a difference in the objective func-
tion between models (P1) and (P2) greater than the optimality gap
which shows that this solver is not reliable to solve this type of
problems.

Fig. 9. Comparison of performance profiles of the logarithm of running time of
“sizing instances” solved using models (P1), (P2), (P3) and (P4) with an optimality
relative gap of 0.1% for the linear solver and 2% for non-linear solvers.
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Fig. 10. Comparison of performance profiles of relative difference between simple
and more complex formulation for “sizing instances”. Models (P1) and (P2) were
solved to an optimality gap of 2% and (P3) and (P4), to an optimality gap of 0.1%.

Fig. 11. Comparison of performance profiles of the logarithm of running time of
“routing” and “sizing instances” solved using models (P2) and (P4) with an optimality
relative gap of 0.1% for the linear solver and 2% for non-linear solvers.

As a final step in this work we compare in Fig. 11 the per-
formance profiles of total running time obtained after solving all
instances generated for this work (435 in total). Here we can see
that for “routing instances” (P4) is much more robust than (P2),
that was not able to solve any of those cases. In average (geo-
metric average), the instances take about 40 s to be solved using
model (P4), which is about the 3% of the time required by (P2)-
BONMIN and less than the 1% of the time required by (P2)-SCIP.
Nevertheless, for some punctual instances that represent the 4.6%
of the instances studied, the time and/or memory usage were not
enough to get the desired optimality gap. From this it can be
stated that for the solution of more realistic instances or even
to solve real problems considering continuous equipment sizes,
the formulation proposed in this work is much more reliable and
faster than the usual and widely studied standard MINLP formula-
tion.

6. Conclusions

In this work we present a scalable approach to solve, within
reasonable running times and quality assurance requirements, the
problem of designing a biotechnological multi-product batch plant
that support continuous equipment sizes and discrete host and/or
process selection, up to sizes of real instances and that can be appli-
cable to any kind of multi-product batch plant.

The proposed method was  proved to be more numerically sta-
ble than other alternative approaches for the same problem giving
true optimal solutions, and in general, faster than other tested
approaches. Our method takes advantage of two facts: the con-
tinuous relaxation of the feasible region is convex and bounded
(which allow us to build, up front, inner or outer approximations
of the feasible space, and thus report true upper/lower bounds for
each instance); and the fact that mixed-integer linear solvers are
much more stable numerically and scalable in size than MINLP algo-
rithms. Also, this approach relies on “off the shelve” optimization
and modelling software, which makes it more amiable to practi-
tioners.

To assert our claims, we borrow algorithm comparison tools
from the optimization community, which are an interesting form
to test the quality of competing algorithms to tackle the same class
of problems.

Although, in a real scenario, semi-continuous units such as
centrifuges and microfilters, among others, are available only in
discrete sizes, unlike tanks that can be built according to customer
needs, we feel that the proposed approach is robust enough to
consider such issues, however, this was left as a next step in our
research. Additionally, to increase the precision of our results for
real cases, it is possible to explore a two step approach where after
using the proposed method to obtain upper and lower approxi-
mations for the objective function we  can refine different upper
and lower variable bounds making them tighter and perform a
re-optimization.

Finally, if true speed is the goal; we know that low-level imple-
mentations of dynamic inner/outer approximation can provide
further time reductions, however, we  feel that this is beyond the
scope of this work.
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